US009064031B2

a2 United States Patent

Annapragada et al.

US 9,064,031 B2
Jun. 23, 2015

(10) Patent No.:
(45) Date of Patent:

(54) ADVANCEMENTS IN DATA DISTRIBUTION
METHODS AND REFERENTIAL INTEGRITY

(71)
(72)

Applicant: Tesora, Inc., Cambridge, MA (US)

Inventors: Mrithyunjaya Annapragada, Bolton,
MA (US); Douglas A. Shelley, Oakville
(CA); Duk Loi, Richmond Hill (CA);
Benjamin Rousseau, Somerville, MA
(US)

(73)

")

Assignee: Tesora, Inc., Cambridge, MA (US)

Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by O days.

@
(22)

Appl. No.: 14/150,056
Filed: Jan. 8,2014

Prior Publication Data

US 2014/0214894 A1l Jul. 31, 2014

(65)

Related U.S. Application Data

Continuation of application No. 13/966,980, filed on
Aug. 14, 2013, now Pat. No. 8,938,472.

Provisional application No. 61/757,809, filed on Jan.
29, 2013.

(63)

(60)

Int. Cl1.
GO6F 17/30

U.S. CL
CPC GO6F 17/30979 (2013.01); GOG6F 17/30463
(2013.01); GOGF 17/30466 (2013.01); GO6F
17/30545 (2013.01); GO6F 17/30289 (2013.01);
GO6F 17/30864 (2013.01); GOGF 17/30595

(1)

(52)

(2006.01)

(58) Field of Classification Search

GOG6F 17/30864; GOGF 17/30979
.. 707/737, 770, 769

See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

7,818,349 B2 10/2010 Frost
8,219,550 B2 7/2012 Merz
2004/0083475 Al 4/2004 Todd
2011/0041006 Al 2/2011 Fowler
2012/0066020 Al 3/2012 Moon
OTHER PUBLICATIONS

“Polymorphism.” Merriam-Webster.com. Merriam-Webster, n.d.
Web. Aug. 7, 2013. <http://www.merriam-webster.com/dictionary/
polymorphism>., 3 pages.
Hierarchical clause. IBM Informix, http://pic.dhe.ibm.com/
infocenter/idshelp/v117/topic/com.ibm.sqls.doc/ids__sqs_ 2033.
htm., Oct. 2012, 5 pages.
Parallel Query Execution in PRISMA/DB. Wilschut and Apers. In
proceedings of PRISMA Workshop on Parallel Database Systems
(1990), 4 pages.
Object Placement in Parallel Object-Oriented Database Systems,
Ghandeharizadeh, Whihite, Lin, Zhao, USC Los Angeles, 1994., 31
pages.

(Continued)

Primary Examiner — Huawen Peng
(74) Attorney, Agent, or Firm — Cesari and McKenna, LLP

(57) ABSTRACT

An elastic parallel database system where data distribution is
container- and container-context based. Container Based
Tables are defined and Container Member Tables achieve
co-location of data as needed. A polymorphic key may also
establish polymorphic key relationships between rows in one
table and rows in many other possible tables.

(2013.01) 24 Claims, 35 Drawing Sheets
CREATE DATABASE DOES THIS DATABASE NO
COMMAND EXIST IN LIST CF
RECEIVED KNOWN DATABASES?
(101) (104)
YES
Yy
TS COMMAND RECORD THE DATABASE
SYNTACTICALLY N THED:‘TIASBTASOEFS KNOWN
CORRECT? g
(102) YES A (106)
GENERATE ERROR
MESSAGE
NO (105)
y
GENERATE ERROR GENERATE SUCCESS
MESSAGE MESSAGE
(103) (107)
N

'w

A multi-client SaaS Database showing database creation

US 9,064,031 B2
Page 2

(56) References Cited

OTHER PUBLICATIONS

On Multi-column Foreign Key Discovery, Zhang, Hadjieleftheriou,
Procopiuc, Ooi, and Srivastava, VLDB 2010, vol. 3, No. 1., 10 pages.
Federated database systems for managing distributed, heteroge-

neous, and autonomous databases, Sheth, Larson, ACM Computing
Surveys, 1990., 54 pages.

A comparative analysis of methodologies for database schema inte-
gration, Batini, Lenzerini, Navathe, ACM 1987, 0360-0300/86/1200-
0323, 42 pages.

PostgreSQL Documentation, Chapter 5.8 Inheritence. http://www.
postgresql.org/docs/9.0/static/ddl-inherit.html, 1996, 4 pages.

US 9,064,031 B2

Sheet 1 of 35

Jun. 23, 2015

U.S. Patent

UCTIQ1PaID0 9segelep HUTIMOUS acegele Seeg JUSTTO-TI3TNW ¥ T 2anbtg

(0TT)

(LoT)
dOYSSHEN
SSHO0NS HIVMANED

N

(90T)
SHSYEIVYIYd
NMONM 40 LSIT HHI NI
dSYEVIVA HHI d¥00Hd

A

) 4

(soT)
HOVSSHN
JO¥Yd HIVIENED

N

S3A

(¥0T)
{SESYIVIVA NMONM

ON

40 LSIT NI ISIXH
ASVYIVYIVd SIHL SHOd

A

(€0T)
ADVYSSHN
HOddd HILVdHNHD
N

ON

SIA (z0T)

SLOHTE0D
ATIVDILOVYINAS
ANVWHOD ST

(tom)
qIAIEDEY
ANYIWAOD
ASYIYLIVA HIVHEAD

US 9,064,031 B2

Sheet 2 of 35

Jun. 23, 2015

U.S. Patent

uoTyeaID aTge] DbuTMmOoUs seseqeleg SPRS JUSTTO-TITNW ¥ -z 2Inblg

(0t12)
HOVSSHN
SSEDONS HIVIHENIED

i

(802)
SHTIVYIL-NMONMX
40 LSIT HHI NI
AT9dYL MEN ¥ dd00HY

i

(Loz)
HTdVYI DNILSIXH
HHI HLIM NOILVIDOSSY
AT9YL MEN ¥ dd00HY

1S3A

ON

(902)

CLSIXH
YWHHDS HTdILYdWOD
¥ HLIM H1dV¥l ¥ S40d

(502)
ADVYSSHN
HO0ddd HIVIANHD

A

S3A

N

ON

(v02)
SHTIYL-NMONX
A0 LSIT NI LISIXH HWUN
SIHL 40 dT1d¥l ¥ SH0Od

S3A

(€02)
ADYSSHN
HOMYd HIVIANED

N

ON

(zoz)
$LOHEII0D

N

ATIVYDOILOYINXS
ANVIWNOD SI

(102)
AIATHDOHEYT
ANYIWNOD
ATV L HLYHYED

US 9,064,031 B2

Sheet 3 of 35

Jun. 23, 2015

U.S. Patent

9Sedr1eD SRES 1USTIO-TATNW ¥ ¢ 2anbtd
(LTE) (9T¢) (GTE) (71¢) (€T¢) (ZT€) (TT€)
L ®PON 9 °PON G SPON 7 SPON € 9PON Z OPON T 9PON
sbexolg sbeaols shexolsg sbexolsg obra0o1g oHhex01g sbex01g
_ (1z¢) 198 dnois sbexols _
(zz¢) zoHs dnoan sbrviolg
(ve€) v0ogp _sseqeledq
(€€€) €09p _sseqeleq
m (z€€) zodp sseqeleq |
i (I€€) T0dp sseqeieq !
_ (L7€) (0O N "W "T) GIL°T109P
L ‘s “4 i
e g (2 x 0 tr-toan
d D d) zit
e (g N R
94 ‘a ‘D ‘g '¥) 1L°
(TeeIvl MMWMW Mm ‘a ‘o 'd \mw MH.MNMM
(¢9¢) (O ‘N "W _"T) GI1L €0odp |
(¥ 9¢) (O 'N "W ") G1L %0dp |
(€9¢) (L ‘s "3 ‘0 “‘d) £1°co0dp
(TLg) 1L (z9¢) (4 ‘a ‘0 'd ‘¥) 11 %09p
(19¢) (4 ‘a ‘0 'g ‘'¥) 11 cogp

US 9,064,031 B2

Sheet 4 of 35

Jun. 23, 2015

U.S. Patent

UoT1RISITR ©Tde] PUTMOUS oSsegeleg Sees QUSTIO-TATNW ¥ % 2InbTg

(0T%)
HOYSSHA
SSHODNS HIVYEANHD

A

(60%)
YIVAd HIVIDINW
SHTIYI-NMONY
40 ISIT HHI NI
ATV L dHIHLTIVY Td00Hd

A

(80%)
HTdVL DNILSIXH
dHI HIIM NOILVIDOSSY
ATdVY.L dd00Hd

1s3A

ON

(LO%)

¢LSIXHE
YWHEHDOS HTdILVdRWOD
¥ HIIM HTEGVI ¥ SHOA

A4

(0zv)
aON"

(907%)
HOVSSHN
HOYdd HIVIHENHED

AN

S3A

A

ON

(S0%)
SHTIVYIL-NMONX
J0 LSIT NI ISIXH HWVYN
SIHL 40 dTdV¥L ¥ S40d

(€07)
HDOVSSHNW
HOTdEd HIVIHENHD
A

ON

(2ov)
$IOEII0D

S3A

A
S3A

(P0%) QHIWNVYNHEA

N

ON

ATTIVDOILOVINAS
ANYHNOD 51

(T0%)
JIATHDEY

DNIHd HdTdVL SI

ANVYRWHNOD
ATdYL 941V

US 9,064,031 B2

Sheet 5 of 35

Jun. 23, 2015

U.S. Patent

SUOCT1eI0D3pP

—BUSUDS U0 posSeq SISATIJ pue Axsnb e buTmoys ssedgeled SRS JUSTIO-TIATNW ¥ °G 2anbrtg

(129)

Y1 HTdYL NI dHA0LS
SI T1°70dd IVHL
SEHNIWIHALHAd WHISAS

(709)
SSHOOMd d0d
Ol SA4do0¥d A¥HEND

(£09)
SNOTIVJI0DHd
—YWAHDS HI¥IYdOdddvY
HIIM A¥EN0 IONYISNODHEY

1

(Z0%)
T1L°7T09d ¥04d VIVd dNIdA OL
dAIHHM INIWJHALHd OL SHTIIYL
NMONX 40 LSIT LITINSNOD

(10S)
AIATEDTT
X¥EN0 dITYA
ATTYOILOVINAS

(¢19)

‘YT = 9 ANY

<NOTIIVHODHA-YWHHOS> HYHHM

Y1 WOYA
Y IDHTHS

(T19)

(T = d HEMIAHM
TL 109d WOYA
¥ 10d74dS

US 9,064,031 B2

Sheet 6 of 35

Jun. 23, 2015

U.S. Patent

Azsnb sTdwes J0I wexbeTg =T1gang

9 2anbta

US 9,064,031 B2

Sheet 7 of 35

Jun. 23, 2015

U.S. Patent

a0 Io1Je Axonb oTdwes oI weabeTqg oTgang /. 2INbTI

r

US 9,064,031 B2

Sheet 8 of 35

Jun. 23, 2015

U.S. Patent

Is1n0

sTagng utop
TINd ® JOJ sSo[nNI 92Uyl JO UOTARIIASNTII :8 =2InbT4g

dON :NOILDOY
0T :*ALIHOIdd

17 NOIIOVY
aNH
aNd
(SIHI ‘X) HINGIYISIgHd
NIDHEd
(ILAANTI) NI X d0d
qSTH
dON
(d ‘¥ ‘IYEEM SIHL)ZTI¥NIOL ST JAI
T :XII¥0IYd
NIOL HHI d0d #
JHINGIYISIA UV SWYAYLS IVHI SHUNSNA ANY d1ddnd 004 #
HUI Y04 dEYIN0OTT SNOIIDY JHI SWHOIIHd dT10d STIHI #
T NOIIDY

HINGTYISIAEY ‘HTGYNIOL SI :SHONIZIHAAA
SHA XEIEWOHED SHIAIAOW

SHX HEMMI SHIAIAOW

D :181nd1N0

d ‘¥ :S1NdNnT

2T XRI1II¥OIHEdA

HNON :SHIISINDEIAEJ

004 HWYN

US 9,064,031 B2

Sheet 9 of 35

Jun. 23, 2015

U.S. Patent

HTIYNIOL SI UuOT3duniy © JO UOTJIRIJSNTTI

®R% (1SYDAYOdd ==
[| I8SV¥Davodd ==

((D “(g)NOoIlIndIYdLSIa ‘(%)
% Jddd == (d)
®® qdd == (¥

NYAITO0d SNYNIAY (9 WYHAEILS

()
(¥)

6 2anbtTg

aNH
{41 aN™

THSTIVA NINIHEA

d5TH

fANYI N¥NIEY

((d)sndoT

(¥)sno01
HJAIL NOIINIIYISIA
TIAI NOIINIIMISIA)) AI HASTH

THNYI NMAIAd

)

'V WVAELS

‘D NIOD

NOIILNIIYISIAa)
JIAL NOIINIIMISIA
HIAL NOIINIYISIA) 4T

)

SNIOL

NIDHA
ATIYNTION ST NOTIIODNNA

wxozieTd STbhurs © yiTtm SSPON 23ndwe) DUTUOTSTAOIF 0T 2Inbtg

US 9,064,031 B2

Sheet 10 of 35

Jun. 23, 2015

(0€0T) wrczleTd (0Z0T) utbnid
SPON =23ndwo)
(LTOT)
(STOT) & > uoTaeZTITTAN
butzo3TUORN . o
SPON
A
(520T) T
UOTIRWIOTUT v v
(0v0T)
butoTag (?T0T) P - (9T0T) coTny
IoTTOIAUOCD | “1 astT epon Ao1T04
(£€20T)
UOT3RZTTTIN Ammwﬁv L
SOUR]SUT KoTT0d 1
|
(0TO0T) SWAa¥dd i
(zzZ0T) (ZT0T) “
2ceaTay 20UB3SUT sseaTayY 9PON IIJW/// (TOOT)
sutbuy
(TZ0T) (TTOT) \\ uoTInoswa Aaend
b S i
Jssnksy sour3isul 1sanbay 2poN “

U.S. Patent

US 9,064,031 B2

Sheet 11 of 35

Jun. 23, 2015

U.S. Patent

swxoJleTd oT7dTaTnu

U3TM SSPON =23nduo) DUTUOTSTAOIJ

TT S2aInbtg

(0LTT) (09TT) (0GTT)
£ WI0I3IBTd ¢ wiojjeld T WIOF3eTd
(TLTT) §,IdY (T9TT) s.,IdvY (TSTT) €,Idv
(O¢TT)
©oT1PZT1TAN ummﬁﬁv (0€1T) uthnig
poN 1STT 9PON SPON =221nduod (E
0 (0ZT1T)
(FETT) (ce11T) (ze1T) P R ssTny
DUTIOATUOR ISTTO hig A h g
L L TTOI3uUC) oTTOod KoTT0d
(TE€TT) s,Iav¥ C =)
o€
(OTTT) SKAaId=
> (TOTT) =HO

US 9,064,031 B2

Sheet 12 of 35

Jun. 23, 2015

U.S. Patent

‘sdnoib sbeiojs pue sa1ge] STdIATNW :zI =2InbTg
(LTZT) (91Z1) (GTZT) (v121) (€TZT) (2T2T) (T1Z271T)
obrvIxolsg obrIxolsg obevIro1lsg obeIro1sg obrI01g obrI018 sher01g
(TzzT) T dnoxn sbexolg
(zzz1) ¢z dnoin obexonlg
(€zz1) ¢ dnoin sbexols
(bzz1) ¥ dnoan obeaoig

(198)
(TectT)

1seoproag
TL =Tl

(z9s) aad

(Z€ZT) zl =19eL

(£D5) 3seoproad pue (¢oHsg) aad
(£€21) €1 =219®BL
(€9Ss pue 19HS) dAAH
(€€27) ¥1 oTdel
(¥98) aad

(z€Z1) 61 ST19el

US 9,064,031 B2

Sheet 13 of 35

Jun. 23,2015

U.S. Patent

(08€T) =PON

(T8ET) xobeuen
SPON

(0LET) SPON

(TLET) xobeUen
SPON

(09€T) =PON
(e] (o]
(T9€T)

Iobeuel SPON

(0GE€T) SPON
(o] (o]
(ISET)

Iobeuer SPON

(80€T)

©IEPLISKH

(TOET) SPON ISTTOIIUOD

(LO€T) suthux
UOTANOSXY
Aasnpd

(00ET) aobeuel
©3epPeISn
boTe3e)d

(C0€T)
IOJeUTPIOOD
UOTJOLSURIL

(z0€T1) Isuueld
Kasnp oTweulg

(s0c1) aobeuen
Abotedor
Wwo3SAS

(FOcT) Iobeuen
UQOT109UU0)

JUSTTD

(60€T)
530139
UOTJOPSURIL

A

(TOET) ®remizos
uctieoTTddy IUSTID

¢T 2anbTa

US 9,064,031 B2

Sheet 14 of 35

Jun. 23, 2015

U.S. Patent

TqQ JO UOT2AeDTITDoads purg-JOo—-1n0 JO MITAIDAQ

ON

(€0%1T) 4D yaTm ps200id

4

N

(G0

1)

(s)uoT3eorTyToads-pueq
-70-10N0 Y3Tm Tag 3uswbny

SHA

ON

/

\

SHA

(PO¥T) cuoT3iRDTITOSdS
pueg-Jo-31no ue 815yl ST

A

(z0% 1) <&TTad

Agzonb oyl sI

N

(TOPT) SWEaddd Aq

poAaTSDaI AX

snd TOS #sN

I oJanbTg

US 9,064,031 B2

Sheet 15 of 35

Jun. 23, 2015

U.S. Patent

TIGT
OTGT
6061
80GT
LOGT
9061
GOGT
POGT
€061
c06GT
1061

— e~ e e e e e e e e e
e e el e el e e el e e

UOT3eDTJITOSdS puerg-JO-3no ue JO oTdwexs Uy G Sanbtg

IIONVYY OY HONVY ONISN

(ILNI)HEONVYY OV SISIXHd ION Al HONVE HIVAID

ANH
(dID) NO HINdIY1SId
INOILYDIAIDHAS
!<STIHI> dNo¥s HA9VUO0LS
1 HAND0TOMd
0T :*XALIMOIMd
Zb9TdrVL HINIVYNDIS
JANOLSNDx * AWNYNHTIVL
ATIVI-YHANOISND "WHLSAS :SHATIIHTAO
ATIVL-YHNOLSND :HWYN

US 9,064,031 B2

Sheet 16 of 35

Jun. 23, 2015

U.S. Patent

AQ B JO UOTIZBDOTOY :9T 2Janbtqg

(0T9T) ¥
A._wa._”v uoTleisusH
7913¥ peppe ATMeN
(9¢9T)
(9701
CPPPEPEPT €T o woraerouss
(G6goT)
(GT9T)
DCLPPEPRPPIP (€ G UOT3RISUSYH
(PEST)
- — P (P19T)
(v ‘LT) = AQ |€ ¥ UOT3RISUSH
(€€8T)
. (£19T)
TODPEPREPIEP <€ ¢ uoTjeI2USH
(z€9l)
P (z18T)
LPPPEPPPLI€ & voraerouss
(T€ST)
(TT9T)
OCPEPIEPPTNP [€ T UOTIjEeILU3DH

(TLOT)
(¥ ‘LT) AQ sy3 butdden
brhbbbbprb ~ (3 ‘LT) AQ
(TS9T) =x01=d
(GZ9T)
bbb bibh ke (so9T)
UOT}eISUSD
(729T)
brbbrbbrb le (v09T)
UOT}eISUSD
(£29T1)
bbb le (€09T)
uoT3eISUSD
(229T)
Tobblbbbh ke (029T)
UOT}eISUSD
(T29T)
(TOo9T1T)
bbb hbbrb ke S0 19 30ums

US 9,064,031 B2

Sheet 17 of 35

Jun. 23, 2015

U.S. Patent

Tad Tos burtpuodssaxod

UATM BUWSUDS TROIUDIBRISTY B DHUuTMOUsS wexbeTd dTysuoTielsd AAT3ud uy /.1 =2anbrtdg

(I NOILVIOND)SNOIIVICND SHONAYHAHY
(GTLT) > (AI" NOIIVIOND) AdM NOHITMOA
(-
‘INI dI NOIIV1IONd
‘RAEM RIVWIYA INI dI° INHWHOVIIV
(PTLT) >) SINAWHOVIIV ATdVI HIVHMD

£ (QIT10EL0Md) IDEL0d SEONTITATY
(€TLT) —m 5 (AI710E00¥Md) AT NOITNOJ
-
‘INI dI 104"Ero¥d
‘xaEM AMYWINA INI dI NOIIVIOND
(eiet) >) SNOIIVIOND TTIVI TIVIED

(TTLT) —— ‘o
‘ZEM RAVWIEA INI Al IDEL0OMd
) 10E00¥9d FTIVI HIVAMD

(soLt1)
SINAWHOVIIV

(€0LT)
SNOILVI1OND

(TOLT)
10drodd

US 9,064,031 B2

Sheet 18 of 35

Jun. 23, 2015

U.S. Patent

SWEQYdd Ue UT UOTINGTIISTD BIED

1sEOPEOI]

poseqg JISUT2IUOD JO UCTITUTISD SUL

(PPRT) sS3uncope

1SEIPEOI]

(EFET) sjunoope

i==folo)-Tok e |

LD

(ZFBT) s3juncope

18EoPEOI]

(PE8T)
AUSIWYLEI]E

LD

(ITFBT) s3juncope

(egT)
EheE=liiefe)=talnh=]

LD

LD

(zeaT)
1USUYoEI11E

LD

(Pz8T)
suoTirlconb

LD

(Te8T)
AUSWYLEI]E

(£z8T)
sucTtivicnk

LD

61
FT

(zzaT)
suoTieionbk

LD

LD

($78T) 3o=lojd

w

(Tz8T)
suoTielonb

Ldo

(£181) 3oalfojd

I~

o

(y081) v0°3ts

Lo

(z18T) 3o9alfoqd

(€081) €Q°3ts

140
{TT3T) 2o=lodd

(z08T) Z0®3ts

(TO8T) 10°3ts

18T SanbTa

US 9,064,031 B2

Sheet 19 of 35

Jun. 23, 2015

U.S. Patent

(G06T)

(P06T)

(€06T)

(z06T)

(TO6T)

NOIINGIMISIO VYIVA JHESVY HANIVINGD I0F Tdd =yl Dutieaisnill

!9INdIdISId ISYoavodd

DSITNEISP dNOY¥H HOVYOLS (Suwnfod) SINNODOV FIdEVL

fxeuteluoDd FLAGIYISIA YINIVINOD
SXEM NOIHYOdA (Suwnfod) INHWHOVYILIVY FIgVL

{Touteluodd FIAGIVNISIA JYANIVINOD
SXEM NOIFHOA (SUWNTOD) SNOIILVIOND WIdV.L

!zouteluocdd WANIVINOD ¥O0d JOIUNIWIYOSIA
' (pT 309foad) aad
(" ‘3uT pT 30sload) I1DALOYd FTILVL

D53 TNeISP JNOYD HOVIOLS JIduteiuodd YANIVINOD

16T 2anbTg

HLYHIO

dLYHIO

HLVYHIO

[CAR - 4CR10)

[CAR - 4CR-10)

US 9,064,031 B2

Sheet 20 of 35

Jun. 23, 2015

U.S. Patent

00 TTINON =2y3 ut

(7002)

(£002)

(z002)

(1002)

SUOTSTOOP 40J FO UOTABRIJISNTTI 07 2anbta

AT 1LOELrCEd 0 = dI 10dro¥d’d HYHHM
O SNOILVIONO ‘d S1D0drodd Wodd

dI NCIIYIONC'T
'dI LoEro¥dtd LO4THES

‘I INQODOY Y = dI INQODOY¥'d HYHHM
¥ SINQODOY ‘d SIDHELCEd WOdd
ANYN Y ‘AWYN d I1DOdTHES

{910FL,0¥Yd WOYA x 1DHATHES

{(TTIAN) Fsuteluc)d YENIVINOD HNISH

US 9,064,031 B2

Sheet 21 of 35

Jun. 23, 2015

U.S. Patent

DD TYdOTID |8U3l UT SUOISIOSP J0d JO UoT3eIlsnT[I @[z =2anbtjg

(?012)

(€0TZ)

(Z0T2Z)

(T0T2)

‘dI IDELO¥4T0 = dI IDELCdd d HMHEEM
O SNOILVIOND ‘d S1OEL0¥d WOoud

dI NOIIVIOND- O
‘dI 1LoEro¥acd LOATHS

‘dIT INQOJDY ¥ = dI INAOJDY'd HEMHEEM
¥ SINNODDY ‘d SI12UL0¥d WOdId
HNYN Y ‘EWYN°d 10dTES

{810H009d WOMA » IDATES

{(T¥40TH) Fsutreiuocdd WIANIVINOD ONISNH

US 9,064,031 B2

Sheet 22 of 35

Jun. 23, 2015

U.S. Patent

D0 PSTIIToads © UT SUOTISTIOSP 40Q IO UOTIBRIZSNTII 7z 2anbta

(%022)

(€0zz)

(z0zz)

(TozZ)

‘I 12EL0o¥dT0 = dI 1DdEroddtd IMEHM
O SNOILVIOND ‘d S1DodErodd WOdd

dI NOIIV1ono- 0
‘a1 1o03roddacd LOATHS

‘I INQODJDOY' ¥ = dI INONOD2DY¥ ' d I¥HHM
¥ SINAOODY ‘d SI1DELOo¥Md WO¥d
HAYN Y ‘EWYN"d ID0ETdS

15100093 WOYd « IDHETHS

(L) asutejuond WEANIVINOD SNISQ

US 9,064,031 B2

Sheet 23 of 35

Jun. 23, 2015

U.S. Patent

1X93U0) J2UTejluo) 99Ul buTAjToads JO siAhem I9U3lQ

(S0€2) (" ‘9%
(" 'dI NOIIVIONO “‘dI INAWHOVIIVY) SINAWHOVIIY

(F70£2) (" '12
(" ‘I 1LOoHr0dd “‘dI NOIIVYLIOoNd) SNOILVIOND

(€0c2) !
(" /a1 I0"EL0¥d) SIDAr0¥Yd

(z0€Z) (™ ‘02
(" ‘I 1DoELo¥d ‘dI NOIIVIONO) SNOIIVIONd

(T0ETZ) !
(" ‘I 1IDHLr0dd) SI1Odr0odd

-e¢

‘7L
OLNI

‘9%)
OLNTI

‘12)
OLNI

‘9%)
OLNI

‘02)
OLNI

oanbt g

SHNTYA
LIHSNT

SHNTYA
LdHSNT

SHNTYA
JIHSNT

SHNTYA
LTIHSNT

SHNTYA
LdHSNT

US 9,064,031 B2

Sheet 24 of 35

Jun. 23, 2015

U.S. Patent

(92%2)

(GZh2)

(%2%2)

(€2¥%2)

(22%2)

(12%2)

T T0S butpuodseaxod pue
UATM BPUSUYDS TeOTIUDIRISTY B DPutmoys weabeTqg dTUsuoTaeIsy A3TAUud UV :Fz =aInbrtj

(ard)d SHEONIYHATY dId AEM NOIHNO4
(™ ‘INI aId
fREM ANYWIYd INI dId) 4 dT19YL dIvEyYD

(dIa)d SHEONIYHATY dId AEM NOIHY04
(™ ‘INI 4Ia
‘REY AYYWIYd INI dId) d dT19YL dIVEYD

d(YINI dID
‘AAY AYUYWIMd INI dId) d d79YI JZIVEED

f('INI drda
RAY AEYWIMd INI dID) D d1dYl HIVEED

(AID)D SHEONIYMHATY dID AEM NOIHNO0L
(" 'INI dID
‘REY AYYWIYd INI dId) g dT19YI dIvVEYD

(arg)dgd SHEONIYNHATY dId AEM NOIHY04
(™ ‘INI aId
‘REY AEYWIYd INI dIV) V¥V dT19YI dIVEYD

(0€w2)

(6z¥2)

(82%2)

(LZv2)

(gzve)

(Geve)

(b2v2)

(ez¥v2)

(zzw2)

(12v2)

‘goTyDIRrISTy STdT3Tnu

(90%2) 4

i

(To¥z) ¥

US 9,064,031 B2

Sheet 25 of 35

Jun. 23, 2015

U.S. Patent

SBTYDIRISTY

sTdT3Tnw JO UOTAINQTIASTQ ®IRd Pased IsuTeluo)d I0J Tdd JO UOTIRIAISNTII 'GZ =INbTd

(8062)

(L0GZ)

(906¢2)

(G062)

(7062)

(£062)

(z0G27)

(T0s2)

JISUTRRUODL WENIVINOD d0d MOIVUNIWINOSIA

‘(pTP) aad
(" f3UT PTR) 4 WIGYI FIVIID

JISUTRRUODD WEANIVINOD d0d MOIUNIWINOSIA

SAHEA

SAHA

SAHM

SAHEM
izbs dnous

{1bs dnous

‘(pTo) aam
(" ‘3UT PTO) O WIGYI FIVIED

{I9UTRIUODD HAINITYISIA HANIVINOD
NOIFZJ04d ™ (suwnfod) d ATdVI HIVEID

{I2uTRlUODD FINGIYISIA YIANIVINOD
NOIEJ04d ™ (suwnfod) ¥V dATdVL JIVIID

{I2uTRlUODP FINGIYISIA YIANIVINOD
NOIHEMOd ™ (Suunfoo) 4 TIgVL IIVIID

‘ZouTejUODP FINYIYISIA YANIVINOD
NOIHEMOd ™ (Suwnfoo) W AI9VLl HIVIID

AOYHOLS JI9UTBIUODP WIANIVLNOD HLVI¥D

ADYE0LS I2UT2lUODO WHENIVINOD HIVHID

US 9,064,031 B2

Sheet 26 of 35

Jun. 23, 2015

U.S. Patent

(T) UOT3EN3TS ISBUTLJUCD-TATNW © UT saTasnb JO sucTtieI2snTTI

(¥092)

(€092)

(z092)

(T092)

197 2anbtg

‘dIQq°H9 = JIa-da
AN¥Y JdId "d = JdIda o
dNY dID"d = dIdD'D
dNY dID "D = dID'd

ENIHM 2 ‘d ‘D ‘d Woud
dI¥ d ‘dra-d ‘drd'o ‘ard-d IDET4IS

!(pT) ISUTBIUOCDP WANIVINOD
! (TTAN) ISUTRIUODD ¥ANTIVINOD

‘arad
adNY dIa*a =
aNY dId*"d
dN¥Y dID'D0 =

DNISN
DNISN

arar
arar
aro:
aro’

Mm O O O

HYEHM E ‘d ‘D ‘d Wodd
dId'd ‘dara-a ‘droto ‘drdcd 104dT4ds

{(TTAN) FI2UTRIUODP YINIVINOD 9NISA
{(TTTIAN) I9UTBIUODO YHANIVINOD 9NISN

US 9,064,031 B2

Sheet 27 of 35

Jun. 23, 2015

U.S. Patent

(7) UOT3IENITS ISUTRIUOD-TITNW © uT soTasnb Jo suoTiealsnylI

(F0LZ)

(€0.2)

(zoLz)

(T0L2)

1,7 sanbta
‘6T = Q1Q-°a
ANY dId*"d = dIa“d
adN¥Y dIa d = dIa* o
adN¥Y dID"d = dIDo*D
dN¥Y dID"D = dIdo*d

HIEEM 4 ‘d ‘D

‘d Wodd

drd-¥ ‘dara-a ‘ard-o ‘ard 4 1odETES

{ (1) ISUTBIUODDL YHANIVINOD SNISNH
{(TYEOTIH) ISUTe3UODD YEINIVINOD SNISQH

‘qrg-a

aNY dIa-d

aNY dID"d

aNY dID"D
A¥NEEM J ‘a ‘D

aia-da
dra-o
dro-°o
ario-~d
‘d Wodd

drd-¥ ‘dara‘a ‘ard-o ‘ard-4d 1odTES

LN

(XN

(6T) IJsuTelUODP YANIVINOD HNISA
(0T) I9UTBPIUCDD WHNIVINOD SHNISN

US 9,064,031 B2

Sheet 28 of 35

Jun. 23, 2015

U.S. Patent

S, IMASNT IWD PUuTanp DO-JIIVWOINY UT ucTiraad) woilsks 18z 2Inbtg

(6082)
HOddd NV HALIVIANHED

(908¢z)d1NAd
ONIHDIVASIA 0Ol
ONIAHEOOOVY MOd HOIVASIA

(vosgz)

(£0827) SHEHTINY 149D ¥O
aasvg YINIYINCD-NON OL
ONITHOOOVY MOY HOIVASIA

. LANNOA ETNY
-
ONIHOL¥JSIA
ON N
QITYA ¥ SI
& (zoge)
- ON LMD ¥ HT9VYL SI

(" ‘a1 1oHrodd

(1082)
S0 eT ‘vl

SHTVYA

‘0T NOTIVIOND) SNOTIVIONG OINT IH¥HSNT

US 9,064,031 B2

Sheet 29 of 35

Jun. 23, 2015

U.S. Patent

S, IdHSNT

(G062)
d0ddd NV HIVIHANHAD

(€0627) SHINT 19D 4O
aasvd JENIVINOD-NON Ol
ONIQYOQ0V MOY HDIVASIA

IWD buTaInp DO-DIIVWOINY UT uoTlersd(welsAg

(9062)dT10d
ONIHOLVASIA Ol
ONIQY00DV MCd HOIV4SIA

SHA

(v062)
AANNCA dT1NA
ONIHOIVASIA
dITVvA ¥ S1I

(z062)
CIWD Y dTdYI SI

167 2anbrg

(1062)

S¢T 'FL 'F8) SUNTIVYA
‘01 NOIIVIoNd “dI” INEWHOVYIIV) SINHWHOVIIVY OINI IMHSNI

US 9,064,031 B2

Sheet 30 of 35

Jun. 23, 2015

U.S. Patent

drysucTieTsa ewsyos oTydaocwATed v :1Q¢ Sanbta

(600¢)
SINAWHDOVYILIVY
N
(800¢)
SYH
- T
- | I
- - -~-

T \\\\\\ \\\\ “ ’lll” t
k\\\\\l ._”\\\\ T _ IIIM 'l’lll'
(L00€) (300¢) (G00¢€) (v00¢€) (£00¢€)
SINIVTAWOD SNVTd SLY0ddd SNOIIVIONO SHOIOANI

(200€)
SNIVINOD

(100€)
LOHErodd

US 9,064,031 B2

Sheet 31 of 35

Jun. 23, 2015

U.S. Patent

¢O0TE 7

TOTE

(PT T®x

0¢ =2anbtg Jo eweyos oTydaowATod IO0IJ Tdd

!Zouteluodnd HINGIYISIA YWEINIVINOD
‘adA3 Tox) oTnI ® XAM DIHAYOWATOL
(3UT pPT T®Z

‘(0g) aeys adAy Tox

1S =anbtg

‘quT pT ®) INEWHOVIIV HIIVL JLVIED

!rouTeluo)d FINGIMISIA YENIVINOD

SAEY NOIEMO4 (suwnfod)SINIVIANOD dTdYL
!zsuTteluond FINGIMISIA YEANIVINOD

SAAM NOIAMOA (sSuwniod) SNY1d dTdVL
!zouTteluond FINGIMISIA YEANIVINOD

SAEM NOIFYOA (SUWNTOD)SHIIOANI FTIVYL
!Tsuteiuodd HINIVMISIA ¥ANIYINOD

SXEM NOIEMOA (Suwnyod) sridoddy dTdvYl
!Tsutejuodd HINIVMISIA YANIYINOD

SAEY NSIEMOAd (SUuwnTod)SNOILIVIOND dTdYL
!asuTeiuo)dd YANIVINOD ¥MOA ¥OLYNIWI¥ISIA
‘(pt 3osload) gax

(" f3ut pr 308load) IDELO¥d IT4VL

!{Hg3TNRISY JNOYH FOVYOIS IsuTteiuodd WANIVYINOD

dLYHAED

ALYAED

ALVHED

AIYHED

AIYHED

dIVYAED
AR IO)

US 9,064,031 B2

Sheet 32 of 35

Jun. 23, 2015

U.S. Patent

T€ 2aInbTg UT STNIT © XAYM DIHJAYOWATIOA IOF TAd :7¢ 2Inbtg

{aNE
(AI) SLY0dHdd SHONHIHAAY
(QI) XEM NOIEJO0J
(802¢) NAHI ,SI1d0ddd, = ddAI NHEHM HASVD
(AI) SINIVTIANOD SHONAIHITI
(QI) XEM NOIHJ0A
(LOZE) NAHL ,SINIVIJANOD, = HTJdAI NAHM ASYD
(AI)SNYTd SHONAIHAIHTT
(QI) ZXdYM NOHIFJ0A
(90Z¢€) NAHL ,SNV¥T1d, = HdXI NIHM HSVYD
(QI) SHDOIOANI SHONIIHAAT
(QI) XA NOHIAIOA

(Goz¢g) NHZHL ,SHDIOANI, = HdXI NHHM HSVYD

(vozg) (dI)SNOILYIOND SHONHIHAIHTT

(cocg) (AI) XHEM NDIHYOJ

(zoze) NAIHI ,SNOIIVYIOND, = HJdAI NWIHM HASVYD

(TO0Z€) SY (dI “‘ddixl) =TI e XHM DIHJAMOWATOd HAIVAID

US 9,064,031 B2

Sheet 33 of 35

Jun. 23, 2015

U.S. Patent

UOTINGIIJSTPSI butaToauTr Agsnb e J07 ueTd Agsnd :¢¢ 2anbrg

(€0g€)

(z0ogg)

(ToEE)

!X°ZANAL = X' TdWAIL HdHHM
CAWAL ‘TdWNAL WOdA

d'CdNELl V' TdWAL 1DWTdS

ALNJNOD—-IINVAIAd NO HINDHAXH

121 WOYA X ‘9 1DWTHAS
(X) AINdWOD—ITNVYAHd OINO

(X ‘d) ZAWAIL OINI dINdI¥dI1sSIady

!T1 WOdA X ‘Y 1DHTHAS
(X) AINAWOD-ITNVAHEA OINO

(X ‘¥) TdWAIL OINI AINdI¥MISIddEY

US 9,064,031 B2

Sheet 34 of 35

Jun. 23, 2015

U.S. Patent

UOTANJIIISTPSI SZTIWIUTITW pPue Sz TwTido
03 sdsijs butaToautr Axsnb syl xo3 ueTd Agsnb uy :pg 2anbtg

ATZANEL = X TdWAL dEHHM
ZANAL ‘TdWNHEL WOYA
d'ZANAL ‘¥ TdWAL IDHETHS
(€07€) HINJdWNOD-I1TNVAId NO HINDHEAXH

! (X-1LSIT) NI A HIIHHM
2l WOYA
X ‘g 1D037TdS
(X) FINAWNOD-1TAVAHAA OINO
(Z0¥€) (X ‘d) ZAWHAL OINI HINGI¥ISIdHAT

T WOo¥dd X ‘¥ 1D4THS

X—ISIT SV (X) ISIT-NOISNTONI HAIVIANHAD
(X) dINdWOD-1TNVYAHd OINO
(TOFE) (X V) TAWAIL OINI HINdIdlsSIadd

US 9,064,031 B2

Sheet 35 of 35

Jun. 23, 2015

U.S. Patent

UOTINGIIJSTPSI SZTWIUTW pur szTwiido o3 sdsi]s
butaToauT Aenb syl x07F ueTd AJenb sjeuxolTE UY (GE 2InbTF

!X Z2dRAL = X" TdWAL HdHHM
CANAL ‘TdWAIL WOYA
g ZdWAL ‘¥ TdWEL I1DHTHS

(€0G€) ALOdWOD-LTINAVAHd NO HINOHUXH

{(X-ISIT) NI X TddHM
TI WOdA
X ‘Y IDWHATHAS

(X) FINdWNOD-I1TNVYAAd OINO
(Z0G¢) (X ¥) TAWAIL OINI HAINGI¥MISIaHAY

171 WO9A X ‘9 1DHATHAS

A—ISTIT SY (X) ISTIT-NOISNTONI HIVYIANHED
(X) AINANOD-ITNVYAAd OINO
(TOGE) (X “‘d) ZdWHAL OINI AINdIdIsIdaad

US 9,064,031 B2

1
ADVANCEMENTS IN DATA DISTRIBUTION
METHODS AND REFERENTIAL INTEGRITY

RELATED APPLICATIONS

This application is a continuation of commonly assigned
copending U.S. patent application Ser. No. 13/966,980,
which was filed on Aug. 14, 2013, by Mrithyunjaya
Annapragada for ADVANCEMENTS IN DATA DISTRIBU-
TION METHODS AND REFERENTIAL INTEGRITY and
claims the benefit of and filing date priority to a U.S. Provi-
sional Patent Application Ser. No. 61/757,809 filed Jan. 29,
2013 entitled “METHODS AND APPARATUS FOR
IMPROVING THE EFFICIENCY OF ELASTIC PARAL-
LEL DATABASE MANAGEMENT SYSTEMS”. It also
relates generally to a prior U.S. patent application Ser. No.
13/690,496 filed Nov. 30, 2012 entitled “Mechanism for Co-
Located Data Placement in a Parallel Elastic Database Man-
agement System”. The entire contents of each those patent
applications are hereby incorporated by reference.

TECHNICAL FIELD

This patent application relates generally to data manage-
ment systems, and more specifically to a parallel and shared-
nothing relational database management system.

BACKGROUND

Relational Database Management Systems are sometimes
referred to as RDBMS.

Distributed RDBMS that are implemented according to a
“Shared Nothing” system architecture are sometimes referred
to as Parallel Database Servers (in contrast to Symmetric
Multiprocessing (SMP) Database Servers) and when the
number of logical computers in the Parallel Database Server
is large, this is sometimes referred to as “Massively Parallel
Processing” or MPP architecture.

Conventionally, the number of logical computer servers
that participate in parallel database architectures remains
constant during the life of the system. Elastic Parallel Data-
base Servers are an extension of the static MPP architecture
where the number and composition of the computer servers
may change during query processing, often in response to the
demands being placed on the system. We refer to Elastic
Parallel Database Management Systems as EPRDBMS.

SUMMARY

Relational Database Management Systems (RDBMS)
maintain metadata information about the schema, and in the
case of EPRDBMS the metadata includes information about
the placement of data on the system.

In cases where an RDBMS is used to store data for a
Software as a Service (SaaS) application, it is very common
that each client of the service has its data and customizations
stored in a database on the RDBMS. In this kind of applica-
tion architecture, there is a one-to-one mapping between cli-
ents and databases, and therefore a SaaS application with
many clients would necessarily have many databases.

In an SMP RDBMS, each database resides on a single
server and in an MPP RDBMS each database may reside on a
plurality of database servers. For the purposes of this preced-
ing statement we refer only to a single copy of the database,
but multiple copies of the data may be maintained for the
purpose of high-availability and redundancy.

10

15

20

25

30

35

40

45

50

55

60

65

2

The Elastic Parallel RDBMS (EPRDBMS) includes a
Dynamic Query Planner that converts queries submitted to
the application into query execution plans that consist of a
sequence of operations that must be performed by individual
nodes inthe system in a specified order in order to produce the
results expected by the application.

Data in the EPRDBMS is stored in tables that are associ-
ated with storage group(s), and the data in the tables is dis-
tributed across a plurality of storage nodes that are members
of'the storage group, using one of many distribution methods,
some of which are data dependent and some of which are data
independent. Tables are grouped into logical collections
called databases.

Elasticity in the EPRDBMS is achieved through abstrac-
tions like storage nodes grouped into storage nodegroups, and
compute nodes grouped into compute nodegroups, and
mechanisms that allow for these to be provisioned dynami-
cally based on the workload being placed on the system at any
given instant of time.

The EPRDBMS ensures that applications are guaranteed
well understood database ACID properties; Atomicity, Con-
sistency, [solation, and Durability, and it also provides appli-
cations with the ability to perform groups of operations that
are either all completed or all aborted but never a situation
where some but not all of the operations are completed.

Unless explicitly described to the contrary, this document
only refers to the first (primary) copy of a database. Without
loss of generality, concepts described here also apply to all
copies ofthe database. This is for simplicity of illustration and
s0 as to not obscure key aspects of the invention.

Commands and operations are submitted to a database in
some query language that is mutually understood by the client
and the EPRDBMS,; such as the Structured Query Language
(SQL) on a ‘connection’ established by the client with the
EPRDBMS for this purpose. Persistent state about the con-
nection is maintained by the database along with each con-
nection.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1. A multi-client SaaS Database showing database
creation

FIG. 2. A multi-client SaaS Database showing table cre-
ation

FIG. 3. A multi-client SaaS Database

FIG. 4. A multi-client SaaS Database showing table alter-
ation

FIG. 5. A multi-client SaaS Database showing a query and
filters based on schema-decorations

FIG. 6. A bubble-diagram showing a simple query

FIG. 7. A bubble diagram showing a sample query after
processing by the Query Rewrite Engine (QRR)

FIG. 8. An illustration of the rules for a Full Outer Join
Bubble

FIG. 9. An illustration of a function IS_JOINABLE
invoked by the Full Outer Join Bubble

FIG. 10. Provisioning Compute Nodes with a single plat-
form

FIG. 11. Provisioning Compute Nodes with multiple plat-
forms

FIG. 12. Multiple tables and storage groups

FIG. 13. Handling distributed transactions in EPRDBMS

FIG. 14. Overview of out-of-band DDL specifications

FIG. 15. An example of an out-of-band specification

FIG. 16. Relocation of a DV

FIG. 17. An Entity Relationship Diagram showing a hier-
archical schema

US 9,064,031 B2

3

FIG. 18. The definition of container based data distribution
in an EPRDBMS

FIG. 19. llustrating the DDL for CONTAINER BASED
DATA DISTRIBUTION

FIG. 20. Ilustration of DQP decisions in the NULL CC

FIG. 21. Mustration of DQP decisions in the GLOBAL CC

FIG. 22. Mllustration of DQP decisions in a specified CC

FIG. 23. Other ways of specitying the Container Context

FIG. 24. An Entity Relationship Diagram showing a hier-
archical schema with multiple hierarchies, and corresponding
SQL DDL

FIG. 25. Illustration of DDL for Container Based Data
Distribution of multiple hierarchies

FIG. 26. Ilustrations of queries in a multi-container situ-
ation (1).

FIG. 27. Nlustrations of queries in a multi-container situ-
ation (2).

FIG. 28. System Operation in AUTOMATIC-CC during
CMT INSERTs.

FIG. 29. System Operation in AUTOMATIC-CC during
CMT INSERTs.

FIG. 30. A polymorphic schema relationship

FIG. 31. DDL for polymorphic schema of FIG. 30

FIG. 32. DDL for POLYMORPHIC KEY a_rule in FIG.
31.

FIG. 33. Query plan for a query involving redistribution.

FIG. 34. An query plan for the query involving steps to
optimize and minimize redistribution.

FIG. 35: An alternate query plan for the query involving
steps to optimize and minimize redistribution.

DETAILED DESCRIPTION OF PREFERRED
EMBODIMENTS

Adaptive Multi-Client Saas Database

Summary: Techniques and methods for improving the storage
and processing of data for Software-as-a-Service Applica-
tions are provided. SaaS applications implemented according
to a ‘Simple SaaS configuration provide each consumer of the
service (referred to as a client application) with an indepen-
dent database. With a conventional RDBMS this database
would reside on a single server and multiple client databases
may share the same server. This model has several inefficien-
cies. First, the large number of databases imposes a signifi-
cant overhead on the RDBMS. Second, each RDBMS is
confined to a single logical database server and therefore
excess capacity needs to be provided on a per database server
basis. This leads to low utilizations as one has to provide this
headroom for the eventuality that one database on the server
experiences higher demands. Thirdly, database management
operations such as backup and restore need to be done on a
per-database basis and this is inefficient. Finally, when appli-
cation changes require database changes, these changes must
be done one application client at a time and this is also
inefficient. The techniques and methods presented herein dra-
matically reduce these overheads, and dramatically improve
the efficiencies of the RDBMS tier under the SaaS application
using techniques of elastic database virtualization and
EPRDBMS.

Software-as-a-Service (SaaS) applications provide the
benefits and functionality of the software in an easy to con-
sume online offering. The provider of the SaaS application
operates the infrastructure on which the application is run,
and the customer connects to the application over a network
and interacts with it, derives the benefits from it, all without

10

15

20

25

30

35

40

45

50

55

60

65

4

the burden of managing and operating it. Many SaaS appli-
cations store data and customizations in a relational database.

Many SaaS applications are implemented in a “Simple
SaaS configuration”. In this operating configuration, data and
customizations for each client of the application are stored in
a client specific database. In addition there may be some
application-wide data that is shared by all application clients.
In the Simple SaaS configuration, each client specific data-
base is stored on a logical database server, and for efficiency,
many client specific databases share the same server. How-
ever, when one client application sees increased traffic this
would result in a higher load being placed on the underlying
database server. When one client application sees increased
traffic, it also has the potential to negatively impact all other
client applications sharing the same database server. There-
fore excess capacity must be provisioned on a “per database
server” basis and this leads to a low overall database server
utilization level.

The ‘customizations’ by a client may include some actions
that could add, modify or delete data in the tables in the client
specific database, add tables to the database schema, or
modify the schema of some of the tables in the database.

An increase in number of tables per client database, and the
number of clients results in a very rapid increase in the total
number of tables being stored on the database server. Such an
increase, the associated overhead per table and database have
aconsiderable impact on the performance of an RDBMS. For
this and other reasons, it is beneficial to reduce the number of
tables and databases in the system.

A common operation with multi-client SaaS applications is
a rolling upgrade where clients are progressively upgraded
from one release of the SaaS application to another. These
upgrades may, in addition to changing the SaaS application,
require modifications be made to the underlying database
including the data and the schema.

According to one aspect herein, the EPRDBMS virtualizes
the ‘database’ and therefore while each client believes that it
is communicating with a RDBMS with a dedicated database
for each client, the underlying storage and data management
is optimized by, among other things, reducing the number of
actual databases and tables used to store the data.

When implemented in the Simple SaaS Configuration, the
addition of a new client requires the creation of a new data-
base to contain the information for that client, and the creation
of the tables required to store information required for that
client. The EPRDBMS herein maintains metadata informa-
tion about each ‘database’ created for a client application and
about each table created in those databases. This metadata
information about each ‘database’ includes such things as the
name of the database and any other optional information
provided for by a Data Definition Language (DDL) specifi-
cation. This metadata information about a table includes such
things as the names of the column, the data type of the col-
umn, and any additional optional information about the col-
umn as provided for by the DDL specification.

In subsequent paragraphs we use terms such as the list of
‘known-databases’, ‘known-tables’, ‘schema-decorations’.
These are collectively part of the metadata maintained by the
EPRDBMS. The namespace within which these lists are
maintained may be a global namespace (a single global list of
known-databases, tables and decorations) or one or more of a
number of namespaces, the appropriate namespace in each
context being determined in some manner such (for example)
as based on the name of the user connected to the database, or
an explicit command to use a specific ‘database’. The use of

US 9,064,031 B2

5

the terms known-database, known-tables or schema-decora-
tions in this description assume that these are referenced in
their appropriate namespace.

When the command to create a new database is submitted
to the EPRDBMS by the client application, this is recorded by
the EPRDBMS in the list of ‘known-databases’.

FIG. 1 illustrates this aspect. When a command to CRE-
ATE a database is received (101), the EPRDBMS analyzes
the command for syntactical correctness (102) and if there is
an error in the syntax, an error message is generated (103) and
the processing ends (110). If however, syntax verification is
successful then the EPRDBMS inspects the list of known-
databases that is part of the system metadata to determine
whether a database by the specified name is already known to
the system (104). If a database by the specified name is
already known to the system, an error message is generated
(105) and processing ends (110). [fhowever, a database by the
specified name is not known to the system, then the new
database is recorded in the list of known-databases that is part
of the system metadata along with any other attributes speci-
fied in the CREATE DATABASE command (106) and a suit-
able SUCCESS message is generated (107) and processing
ends (110).

When a subsequent command to “use’ a named database is
submitted by the client application, the EPRDBMS consults
it’s list of ‘*known-databases’ and confirms that it knows of the
existence of the specified database. If the command to “use’ a
named database is found to be in order, the connection state
associated with the connection will reflect the current data-
base.

When a table is referenced as part of a command, that
reference may include a specification of the database within
which the table resides. If such a table reference is made, then
the EPRDBMS consults its list of ‘known-databases’ and
confirms that it knows of the existence of the specified data-
base, and if that is successful, it attempts to resolve the ref-
erence table in that database context.

When a table is referenced without an explicit qualification
indicating the name of the database, the current database
associated with the connection is used and the EPRDBMS
attempts to resolve the reference to the table in the current
database context.

When data is stored in a table, the EPRDBMS may store
additional attributes along with the attributes specified by the
client application, and the additional attributes being used to
identify the ‘database’ and ‘table’ context of the row being
stored. These additional attributes are referred to as ‘schema-
decorations’.

When a command to create a new table is received by the
EPRDBMS, it consults its list of known-tables to determine
whether a table with a ‘compatible schema’ exists in any
database. How this is determined, and what constitutes a
compatible schema is described in the next paragraph. If it
determines that there is a table with a compatible schema then
the EPRDBMS records the creation of this new table, and the
database context in which it was created, and the existence of
a compatible schema. However, should it determine that no
compatible schema exists, the EPRDBMS records the cre-
ation of this new table, and the database context in which it
was created, and the fact that no compatible schema was
found.

The schema of one table (call it table T1) is said to be
‘compatible’ with the schema of another table (call it table
T2) for the purposes of the embodiments discussed herein, if
the data for both table T1 and table T2 can be stored together
in a single table with some additional columns (schema-

10

15

20

25

30

35

40

45

50

55

60

6

decorations) such that filters on the schema decorations can
uniquely identify the data that belongs to table T1 and table
T2.

Consider the following two tables, T1 (A INT, B CHAR
(30), C DATETIME) and T2 (A INT, B CHAR (30), C
DATETIME). Then, the EPRDBMS could create a table T3
(AINT, BCHAR(30), C DATETIME, D CHAR(2)) and store
the data from T1 into T3 and set the value of D to “T1” in all
those rows, and store the data from T2 into T3 and set the
value of D to “T2’ for all those rows. To get at the data from
“T1’, the system would simply query T3 and add the restric-
tion “WHERE D=‘T1"", and the restriction “WHERE
D="T2"” would give the system all the data in T2.

Consider the following two tables T1 (A INT, B CHAR
(30), C DATETIME) and T2 (P INT, Q CHAR (30), R
DATETIME). Then, the EPRDBMS could create a table T3
(W INT, X CHAR (30), Y DATETIME, Z CHAR (2)) and
store the data from T1 into T3 by using column W for all the
values of A, the column X for all the values of B and column
Y for all the values of C, and set the value of Z to “T1” in all
those rows. It could then store the data from T2 into T3 using
W, X andY to store the data in P, Q and R respectively, and set
the value of Z to “T2” for all those rows. To get at the data from
“T1’, the system would simply query T3 and add the restric-
tion “WHERE 7Z="T1"” and alias the columns W, X and Y as
A, B and C. The restriction “WHERE Z="T2"" and similarly
aliasing W, X and Y as P, Q, and R would give the system all
the data in T2.

For the purposes of the systems discussed herein, tables T1
and T2 as described above are ‘compatible-schemas’ as the
system can easily construct table T3 and eliminate the dupli-
cation of tables T1 and T2 in the system.

FIG. 2 illustrates the steps involved in the creation of a new
table according to one aspect herein. When a command to
create a new table is received (201), the command is checked
for syntactical correctness (202) and if it is found to be in
error, an error message is generated (203) and the processing
ends (220). Onthe other hand, ifthe command is syntactically
correct, the system checks to see whether a table of this name
is in the list of known-tables in the appropriate namespace
(204) and if a table is found to already exist then an error
message is generated (205) and processing ends (220). If on
the other hand, no table by that name exists, the system checks
to see whether a table with a compatible schema exists (206)
and if such a table with a compatible schema exists, the
association is made between the new table and the old table
and data for the new table will be stored along with the old
table (207) and the name of the new table is added to the list
of' known tables (208). The table data is now said to be stored
in a ‘multi-client-table’. If on the other hand, step (206)
determines that no table with a compatible schema exists,
processing resumes at step 208 and records the creation of a
new table in the list of known tables. The table data will now
bestoredina ‘client-private-table’. After step 208, processing
resumes at step 210 and a suitable success message is gener-
ated and processing ends (220).

When a query is received by the EPRDBMS that references
(reads, writes, modifies, or deletes) a table, it consults its list
of' known tables and verifies that the table being referenced is
on the list of known-tables in the appropriate database con-
text. If the reference is found to be successful (i.e. that the
referenced table does exist in the appropriate database con-
text), then the EPRDBMS consults its metadata and deter-
mines whether the appropriate schema-decorations would
apply to the referenced table. It then can update the query
provided to it by the client with the appropriate restrictions

US 9,064,031 B2

7

consistent with the schema-decorations (if any), to ensure that
the query only references data that is germane to the subject
query.

As defined above, data for tables with compatible schemas
may be stored in a single table and the EPRDBMS can dis-
tinguish rows from one table from rows from another table by
applying appropriate filters on the schema-decorations, and
by aliasing columns if required, all based on information it
retrieves from the metadata.

FIG. 3 is an illustration of some aspects of an example
EPRDBMS. Seven Storage Nodes (numbered 1 through 7,
and labeled 311 through 317) are depicted. Two storage
groups SG1 and SG2 are depicted. SG1(321) is associated
with the first five storage nodes and SG2 (322) is associated
with nodes 3 through 7. Four databases were created for client
applications, and these are depicted as dbO1 (331), db02
(332), db03 (333) and db04 (334). The EPRDBMS recorded
the creation of these databases by including them in the list of
known-databases and recorded the user specified directive
that the default storage group for db01 and db02 should be
SG1land the default storage group for db03 and db04 should
be SG2. When the tables db01.T1 (341) and db02.T1 (342)
were created, the EPRDBMS determined that they had a
compatible schema and therefore stored them together in TA
(351). TA is the multi-client-table used to store the data for the
tables db01.T1 and db02.T1. Similarly, it determined that
db01.T2 (343) and db02.T2 (344) had compatible schemas
and stored them together in TP (352). TP is the multi-client-
table used to store the data for the tables db01.T2 and
db02.72. db01.T3 (345) and db02.T4 (346), despite the dif-
ference in the table names and the column names were found
to have compatible schemas and were stored together in TX
(353). TX is the multi-client-table used to store the data for
the tables db01.T3 and db02.T4. Table db01.T5 (347) was
stored by itself as no tables with a compatible schema were
found. db01.T5 is therefore a client-private-table. Tables
db03.T1 (361), db04.T1 (362) and db03.T3 (363) were found
to have compatible schemas and were stored together in TL
(371), TL being the multi-client-table, and while db04.T5
(364) and db03.T5 (365) have compatible schemas, the
EPRDBMS chose to store them as separate tables resulting in
two client-private-tables db04.T5 and db03.T5.

When a command to alter a table is received by the
EPRDBMS, the actions are similar to the actions when the
table is being first created; namely to verify whether a table
with a compatible schema to the new proposed schema
already exists, and to create a new table with the new pro-
posed schema if one does not exist, and to copy all data from
the existing table to the new table by the appropriate applica-
tion of filters based on the schema-decorations of the source
table. In the event that a table with a compatible-scheme with
the new proposed schema already exists the data is copied
into that table, and if that table happened to be a client-
private-table, it now becomes a multi-client-table. If on the
other hand, no table with a compatible schema is found then
the data gets stored in a new client-private-table.

FIG. 4 is an illustration of the processing involved in alter-
ing a table according to one possible embodiment. When a
command to alter a table is received (401), it is first checked
for syntactical correctness (402) and found to be in error an
error message is generated (403) and processing ends (420).
If the command is found to be syntactically correct, the sys-
tem checks whether the alteration being performed renames
the table (404) and if it is being renamed, the system checks
whether a table of the new name already exists in the list of
known-tables (405), and if a conflict is found, an error mes-
sage is generated (406) and processing ends (420). If on the

10

15

20

25

30

35

40

45

50

55

60

8

other hand, step 405 finds no conflict in the new name being
chosen, processing resumes at step 407, and if step 404 finds
that the table is not being renamed, processing resumes at step
407. The system verifies whether a table with a compatible
schema to the proposed alteration already exists (step 407),
and if there is, an association is established with the existing
table, and any prior associations with other tables are
removed (step 408), and processing resumes at step 409. If on
the other hand, no compatible schema is found in step 407, a
new table is recorded in the list of known tables (step 409) and
a suitable success message is generated (410) after step 409
completes migrating data from the old table to the new loca-
tion. As can be seen in the steps above, step 408 may cause a
table that was hitherto a client-private-table to be promoted to
amulti-client-table through the recording of an association of
the new table with the existing table. In a similar manner, if a
multi-client-table were being altered, it could result in a new
table being created and that table may be a client-private-
table.

The EPRDBMS may store some tables with schema-deco-
rations and other tables without schema-decorations. The
EPRDBMS may store data for multiple tables with compat-
ible schemas in a single table, utilizing filters on the schema-
decorations and aliasing to only access the data relevant to a
specific query.

The EPRDBMS may further operate in a mode where data
for more than one client in the multi-client database are ref-
erenced in a single query, this being done by the inclusion of
filters that include schema-decorations for more than one
client. One example of this would be a query that accesses all
data in the database by specifying a filter on the schema-
decorations that allows the query to process all data from all
clients.

When the EPRDBMS stores data for multiple clients in a
single table, operations that are to execute in the context of a
single client are preferably executed with suitable filters
based on the schema-decorations on the multi-client-table to
ensure that the query only references data that is germane to
the subject query.

FIG. 5 provides an illustration of this aspect. A syntacti-
cally valid query (511) referencing objects known to the
EPRDBMS is received (501). The EPRDBMS consults the
list of known-tables in the appropriate namespace to deter-
mine where the tables referenced in the query are stored
(502). For this illustration, assume that the tables used and
their storage is as illustrated in FIG. 1. The system finds (521)
that table db01.T1 (141) is stored along with db02.T1 (142) in
a table called TA (151). To access this data therefore, the
system reconstructs the query (512) with appropriate filters
onthe schema-decorations and references table TA (503), and
the query generated thereof is sent on for Dynamic Query
Planning (504) by the EPRDBMS.

When a command to drop or truncate a table is received by
the EPRDBMS, the EPRDBMS verifies that the table is on
the list of known tables in the appropriate database context,
and if the reference is found to be valid, it determines whether
the data for the table is being stored along with data for other
clients. If the EPRDBMS stores data for multiple clients in a
single table, and the command received was to drop or trun-
cate the table for a single client, the EPRDBMS would
modify this query to delete the data for the client through the
appropriate filters on the schema-decorations, and if the com-
mand was to drop the table then delete the table from the list
of known-tables in the appropriate context.

The EPRDBMS may not immediately determine that it
must store data for two tables with compatible schemas in a
single underlying table, instead relying on some threshold

US 9,064,031 B2

9

(one of which may be a minimum number of references to a
compatible schema) before data for these compatible tables is
stored together. In FIG. 1, tables db04.T5 and db03.T5 (164)
and (165) are shown with compatible schemas but the system
has determined to store them independently.

The EPRDBMS stores data for client applications in tables
that are each associated with at least one storage nodegroup,
with a storage nodegroup consisting of an ordered list of
storage nodes. The distribution of the data across the nodes in
the storage nodegroup is defined at the time when an associa-
tion between the table and the storage nodegroup is created.
According to this aspect herein, the data for a single client,
while appearing to the client to be in a table that is part of a
database dedicated to him, may in fact reside in a table shared
by multiple clients, and in fact distributed over a collection of
storage nodes that are part of the EPRDBMS. The storage
nodegroup associated with a table may be part of the deter-
mination of whether two schemas are compatible or not.

The client application, while attempting to create a data-
base or table, may specify whether or not the object being
created must be considered for consolidation into a multi-
client object or not. This specification may be provided either
as an extension to the Structured Query Language (SQL)
DDL or through some other out-of-band mechanism such as
the out-of-band DDL specification mechanisms described
starting in paragraph [124] below.

According to this aspect herein, the client application may
stipulate that a table being created should be stored as a
client-private table even if there is a table with a compatible
schema. FIG. 1 illustrates tables db04.T5 and db03.T5 (164)
and (165). Despite the fact that they have compatible sche-
mas, the system is shown as having stored these two as client-
private tables. One way this can be accomplished is through a
DDL specification indicating that the table should be client-
private.

According to another aspect, a client can specify that a
table being created should be shared across all clients in a
multi-client system. A common use of such a table is a table
listing system wide information that is of interest to all client
applications. Such a table would be considered a system-wide
table.

According to an aspect herein, the system may assume a
default behavior when the DDL does not specify whether a
table is to be either a client-private, multi-client, or system-
wide. In one implementation herein, that default behavior
would be to make the table a multi-client table.

CREATE [CLIENT-PRIVATEIMULTI-
CLIENTISYSTEM-WIDE] TABLE . . . ;

Accordingly the extension to the SQL DDL in one imple-
mentation is provided as above, showing the ability to specify
client-private, multi-client or system-wide tables, further
depicting that specification as being optional.

Query Rewrite Engine

Summary: Elastic Parallel Database Management Systems
operate by storing data on a plurality of storage nodes and
processing queries received from client applications by trans-
forming them into a series of operations that the storage nodes
perform in conjunction with compute nodes that are used to
hold intermediate data. The series of steps that an EPRDBMS
performs, called a query plan, is generated by transforming
the incoming query based on the metadata stored in the sys-
tem. An error in this transformation could result in serious
consequences like poor performance, data loss, or incorrect
results. The logic underlying these transformations is
extremely complex and therefore error prone. Similar to data-

10

20

25

30

35

40

45

50

55

60

65

10
base optimizers this transformation process is vital to the
proper operation of the EPRDBMS. Methods and techniques
to improve the reliability of these transformations, and the
efficiency with which new transformations can be developed
are presented.

The EPRDBMS herein stores user data on a plurality of
database management servers (storage nodes), and executes
queries received from client applications by rewriting these
queries into a series of steps executed by the storage nodes
and compute nodes, resulting in a result set that is then
returned to the client application, as the result of the query.

The mechanism used to transform the incoming query into
the query execution steps is based, among other things, on the
incoming query, the manner in which data in the tables ref-
erenced by the query are distributed on the plurality of storage
nodes.

Upon receipt of a query from a client application, the
EPRDBMS herein parses the query and determines the com-
plete meaning of the result set being sought by the client
application. It determines the database tables being refer-
enced and consults its metadata to determine how and where
the data for those tables is stored, including the manner in
which the data is distributed across a plurality of storage
nodes.

The Query Rewrite Engine QRE transforms queries
received into the query execution steps (QES) that represent
an ordered sequence of operations that must be executed in
order to produce the desired effects of the query.

The QES consists at least of (a) a set of operations that must
be performed, represented in some form such as SQL, and (b)
the dependency between the operations described in (a) above
indicating which operations in the QES cannot be performed
before some other operations in the QES are completed, and
(c) the location and distribution of intermediate tables that are
produced as result of the execution of some steps of the QES.
In practice the Query Execution Engine (QEE) which is
responsible for executing the QES may choose to execute
multiple steps in the in parallel and at the same time if it
determines that the dependencies of each of them have been
met.

The QRE transforms each input query into an internal
representation suitable for its own processing. This internal
representation is called a Query Parse Tree (QPT). A QPT is
a ‘tree’ data structure where there is a ‘top level node’ that
produces the final results required by the client supplied
query. Each ‘node’ in this ‘tree” has an associated ‘operation’
and some nodes have child nodes as well. Before a node is
executed, all child nodes must have been completely
executed. The DQP generated by the EPRDBMS may there-
fore consist of a plan where multiple steps are executed at the
same time.

The QPT may be represented pictorially as a “bubble dia-
gram’.

Each ‘arrow’ in the bubble diagram represents a tuple-
stream (a stream of rows) and is associated with a ‘geometry’
(the columns in the stream) and a “distribution’ that identifies
which tuples will be arriving from which storage or compute
site, and going to which storage or compute site. These are
some of the attributes of an arrow.

Each “bubble’ in a bubble diagram has a series of identifiers
inside it depicting the kind of bubble. There are many difter-
ent bubbles, performing different database primitive opera-
tions. Each bubble is associated with zero or more inputs and
may produce zero or one output. Each input and output is an
‘arrow’ in the bubble diagram. Further each bubble has an

US 9,064,031 B2

11

execution locus; the place where the operation represented by
the bubble is executed. These are some of the attributes of a
bubble.

Once represented as a bubble diagram, it is much easier to
visualize the operations of a QRE. The QRE makes transfor-
mations of the QPT based on specific rules. These rules may
be applied on individual bubbles, individual arrows, or groups
of' bubbles and arrows, and these rules may be applied based
on the attributes of the bubbles and the arrows. Rules may be
applied unconditionally or conditionally.

The rules used by the QRE (Query Rewriting Rules or
QRR) are specified to the system in some manner understood
by the QRE. These rules may be changed dynamically, and a
change to the QRR will result in a change in the way the QRE
performs rewrites.

The QRR consist of zero or more actions that must be
executed in a manner specified in the rule in order to perform
the actions intended by that rule.

Each rule has an associated priority and if the QRE deter-
mines that it needs to execute multiple QRR’s, it uses the
priority associated with the rule to determine the sequence of
execution.

Some actions modify the tree, and some actions modify the
geometry of a stream (input or output). These are some of the
attributes of an action.

The QRE executes rules in multiple passes, some passes
traversing the bubble diagram from the top to the bottom and
others from the bottom to the top. The direction of the pass (up
or down) is also used to determine the rules that must be
executed. In the top-to-bottom pass, analysis begins at the
node that produces the final results of the query or the node
that produces no output stream (in the case of queries that
produce no results). In the bottom-to-top pass, analysis
begins at the nodes that have no dependencies and proceeds
sequentially through the entire parse tree analyzing nodes
whose dependencies have already been analyzed and culmi-
nates at the node that produces the final results of the query, or
the node with no output stream (in the case of queries that
produce no results).

Having transformed an input query into a QPT, the QRE
executes the appropriate rules for the QPT, and this execution
results in the QES.

This is illustrated with a simple example. Consider the
following query:

SELECT T1.A, T2.B FROM T1, T2 WHERE T1.P=T2.Q;

FIG. 6 shows the bubble diagram for this query. Bubble 601
depicts the scan on table T1; Bubble 602 depicts the scan on
table T2. Arrows 603 and 604 represent the streams emanat-
ing from bubbles 602 and 601 respective. Stream 603 consists
of'the columns B and Q from table T2 and Stream 604 consists
of columns A and P from table T1. The distribution of the
stream is indicated in this diagram by the underlined attribute;
in Stream 603 the distribution is on column Q and in Stream
604 the distribution is on column P. These are both inputs into
bubble 605, the join bubble based on the condition
t1.P=T2.Q. Bubble 605 has one output, and that is the stream
606 consisting of the values of A and B.

A top to bottom pass of this QPT would begin at arrow 606
and then go to bubble 605, and then follow arrow 604 to
bubble 601, then resume at arrow 603 and follow it to bubble
602.

Abottom to top pass of this QPT would begin at bubble 601
and traverse arrow 604 but determine that bubble 605 has
other pre-requisites, and therefore resume at bubble 602 and
traverse arrow 603; then determine that all prerequisites of
bubble 605 have been traversed, and therefore resume at
bubble 605, and then proceed to arrow 606.

10

15

25

35

40

45

50

55

60

12

For the purposes of this paragraph, assume that tables T1
and T2 are both distributed according to some EDD, and
co-located for the purpose of the join T1.P=T2.Q. A query
rewrite-rule applied to the join bubble 605 would, for
example, ensure that the distribution of the incoming streams
is consistent with the join condition. In this example, it would
determine that the stream 604 was distributed according to the
distribution column of T1 (T1.P) and that the stream 603 was
distributed according to the distribution column of T2 (T2.Q),
and that this was consistent with the join T1.P=T2.Q.

On the other hand, assume for the purposes of this para-
graph that tables T1 and T2 are not co-located for the purposes
of the join T1.P=T2.Q. A query rewrite-rule applied to the
join bubble 605 would, for example, ensure that the distribu-
tion of the incoming streams is consistent with the join con-
dition. In this example, it would determine that the stream 604
was distributed according to the distribution column of T1
(T1.P) and that the stream 603 was distributed according to
the distribution column of T2 (T2.Q) and that this was not
consistent with the join T1.P=T2.Q as the distribution meth-
ods for T1 and T2 are not the same. In that case, the QRR
would perform a translation to the bubble diagram in order to
make the inputs to the join consistent with the join condition.

FIG. 7 shows one such translation that may be performed
by a QRR as described in the preceding paragraph. Bubble
701 represents a scan on table T1 and arrow 704 represents the
output stream from the scan bubble 701, and it consists of
columns A and P distributed according to attribute “A” as
depicted by the underlined character. Bubble 702 represents a
scan on table T2 and arrow 703 represents the output stream
from the scan bubble 702, and it consists of columns B and Q
distributed according to the elastic distribution method of
table T2 which is column “Q” as depicted by the underlined
character. Bubble 707 is a redistribution of the stream 704,
and has an output stream 708 and stream 708 is distributed
according to the elastic distribution method of table T2 on
column (T1.P) and depicted by the underlined character. The
join bubble 705 has two inputs, the streams 708 and 703, and
has one output which is the stream 706.

According to the translation in FIG. 7, the inputs of the join
bubble 705 (708 and 703) are distributed in a manner consis-
tent for the join, and is therefore something that the
EPRDBMS can execute in parallel.

The translation described in the paragraph above is an
example of a translation that modifies the QPT. Similarly
translations can change the geometry of a stream when
required.

As described above the Query Rewrite Rules may be pro-
vided to the QRE in a form understood by the QRE, and
specifying the actions, the priorities, and other information
required by the QRE in determining the correct rules to be
applied and the sequence in which those rules should be
applied to the QPT’s. For the purposes of illustration, a simple
text file was used.

An example of the rules for a Full Outer Join bubble is
provided as FIG. 8. Rules may include some key attributes
including the name, prerequisite rules, the inputs to the rule,
the outputs from the rule, and attributes of the rule such as
whether the rule modifies the tree or the geometry, and any
external references from the rule. Each rule contains zero or
more actions. Each action could specify a priority and the
steps to be performed for the action. Comments may also be
specified and in the example set of rules, comments are
depicted by lines where the first non-whitespace character is
the ‘#’ character. An action in a rule may also reference the
current bubble using the special keyword ‘this’. The actions
are specified in a language that allows for the definition of

US 9,064,031 B2

13

variables, conditional operations, branching, loops and trans-
fer of control. The language also supports the definition of
functions that perform some specified operation. In the illus-
tration, a function IS_JOINABLE is shown and it operates on
two streams (in this example, the two inputs to the FOJ
bubble). The function IS_JOINABLE would compare the
geometries of the two streams and return the logical values
TRUE or FALSE.

FIG. 9 illustrates the function IS_JOINABLE and illus-
trates several aspects herein. Functions are defined in a form
and format that is understood by the QRE and for the purposes
of illustration, a simple text file was used. The function is
named IS_JOINABLE and takes three parameters (a join-
condition, and two streams) and returns a Boolean. The func-
tions are specified in a language that allows for the definition
of parameters, return values, variables, conditional opera-
tions, branching, loops and transfer of control. The language
also allows functions to reference other functions.

The QRE transforms a QPT into QES according to rules
defined in the QRR. The EPRDBMS herein provides a
mechanism that can be used to instruct the DQP to reload a
new set of QRR. One such mechanism is an extension to the
SQL language understood by the EPRDBMS. By way of
illustration, the command could instruct the system to load
new rules either for the system as a whole, for the current
session, or for some other group of users, sessions or duration.

[REJLOAD RULES [FOR SESSIONISYSTEM] FROM
<PATH>;

An example of such a command is provided above.

Platform Agnostic Resource Provisioning

Summary: It is necessary for an EPRDBMS to be able to
operate on multiple platforms, each with their own peculiari-
ties and specializations, and in some instances on multiple
platforms at the same time, shortcomings in existing database
management system architectures are exposed. Current
architectures assume homogeneous operating environments,
and often require highly controlled configurations (such as is
the case with database ‘appliances’) and these limitations
pose series impediments to cross-platform and multi-plat-
form operation. Methods and techniques for implementing an
EPRDBMS on a plurality of execution environments (plat-
forms) are presented.

According to one aspect of the system described herein,
once the QRR has completely transformed the QPT into a
QES, the Query Execution Engine (QEE) determines how
many compute nodes are required for each of the steps in the
QES, and provisions the appropriate compute nodes from the
compute nodegroup associated with the connection.

Compute Elasticity in the EPRDBMS is achieved through
the dynamic provisioning of compute nodes in the compute
nodegroups associated with the client connections to the sys-
tem. The EPRDBMS herein allows a different compute node-
group to be associated with each connection, while also
allowing a compute nodegroup to be shared among some or
all the connections to the system at any given instant. In
response to system load and other preset conditions, the sys-
tem may adapt the membership in compute nodegroups to
achieve compute elasticity.

The mechanism for provisioning a new compute node-
group is dependent on the operating environment (platform)
on which the EPRDBMS is running.

For example, when run in an environment such as the
Elastic Compute Cloud environment provided by Amazon,
the mechanism would involve a specific sequence of API
calls. And when run in an environment such as the Joyent

10

15

20

25

30

35

40

45

50

55

60

65

14

Cloud provided by Joyent, the mechanism would be different.
Finally when run in one’s own data center, the mechanism
would be different still.

According to the present invention, as depicted in FIG. 10,
the Query Execution Engine (1011) of the EPRDBMS (1010)
interfaces with the Compute Node Plugin (1020). The Com-
pute Node Plugin provides Application Programming Inter-
faces (API) for the Query Execution Engine to invoke, and
these API’s include Node Request (1011) and Node Release
(1012). When the Query Execution Engine determines that a
query requires a compute node, it makes the request of the
Compute Node Plugin providing information as required by
the API exposed by the Plugin. The Compute Node Plugin
implements the API’s using a Controller (1014), a Policy
Manager (1013), a Monitoring Manager (1015) and manages
information about nodes using a Node List (1016) and Node
Utilization (1017). The Compute Node Plugin provisions
resources from the Platform (1030) by invoking some API’s
exposed by the Platform (1021), (1022), (1023) and (1024).
The Policy Rules implemented by the Policy Manager are
specified in some format required by the Policy Manager
(1040).

The Controller (1014) in the Node Plugin responds to a
Compute Node Request (1011) which may request one or
more nodes and provide additional information about the
kind of node(s) being requested. More particularly, the Com-
pute Node Plugin determines which of the nodes that it has
already provisioned, and is tracking in the Node List (1016),
and which could be allocated to the requestor. When a Query
Execution Engine is provided one or more nodes in response
to arequest, this is recorded by the controller in the Node List.

The Controller (1014) in the Node Plugin, in response to a
Compute Node Release (1012), updates its Node List to
record the fact that the Query Execution Engine is no longer
using the Compute Node(s) being released.

Platforms may expose API’s that allow for the monitoring
ofutilization and the price of resources at any given instant of
time. The Monitoring (1015) makes use of API’s provided by
the platform to gather information about instance utilization
and pricing and updates the Node Utilization table.

The term ‘instance’used in the previous sentence and in the
following paragraphs is very closely related to the term
‘node’ but not exactly identical. Cloud environments (plat-
forms) allow requestors to provision machines and these
machines are referred to as instances. An instance is therefore
a virtual machine or physical machine provisioned by the
platform in response to a request from a user of the platform.
In the context of an EPRDBMS, a Node is a collection of
software programs running on one or more machines. In order
to instantiate Compute Nodes that are being requested by a
Query Execution Engine, the Compute Node Plugin manages
a pool of instances on which software programs are running
and provides these to the Query Execution Engines as Com-
pute Nodes.

For example, in the Amazon EC2 cloud environment (plat-
form), the API call DescribeSpotPriceHistory API call allows
a requestor to find out the current price for a node based on
specific parameters. Similarly, the Amazon EC2 API provides
such interfaces as Runlnstances, Stoplnstances, and StartIn-
stances, to control the state of an ‘instance’ in their cloud. The
Monitoring may also inform the platform of the status of a
running instance using the ReportlnstanceStatus API call.
Also the EC2 API provides for mechanisms to monitor such
run time utilization elements as CPU Utilization, Disk Reads
and Writes, and Memory utilization.

US 9,064,031 B2

15

However, other cloud environments (platforms) may pro-
vide different API’s for these purposes, or in some cases may
not provide some of this functionality, or may provide addi-
tional functionality.

The Controller periodically reviews the utilization of
instances that have been provisioned from the platform, and
based on various Policies (1013) determines the optimum
number of instances that must be maintained in the Node List
at any time. Policy may stipulate such things as a minimum
number of Compute Nodes to maintain at any time, and a
maximum number to maintain at any time. Optionally, Policy
may stipulate a maximum cost per time period for all compute
nodes that are to be maintained, and the Controller uses
information from Pricing Information (1024) to implement
this policy. Some platforms further have billing rules such as
“billing frequency” where instances are billed in blocks of
some number of minutes, hours or days. For example,
instances in the Amazon Cloud are billed by the hour. There-
fore if an instance is provisioned in the Amazon EC2 cloud in
the “On Demand” model, the amount that will be paid for this
instance is determined by the formula:

COST=CEILING(UPTIME IN HOURS)*RATE

where CEILING(X) is defined as:

x if x is a whole number of hours, or

the next largest whole number greater than x if x is not a

whole number of hours.

Similarly, in the Amazon Cloud, if instances are provi-
sioned in the “Spot Instance” model, the RATE can change at
any time and it is up to the Controller to ensure that the Policy
is still respected.

Policy may specify rules in the form of absolutes (cost per
hour not to exceed a certain amount) or in the form of soft-
conditions (target cost per hour not to exceed a certain
amount). In the latter case, the controller is allowed the flex-
ibility to violate the policy in some circumstances which may
also be specified in the policy.

An EPRDBMS may be configured to operate with multiple
platforms simultaneously. Each platform may have different
APT’s, capabilities, and pricing. This is depicted in FIG. 11.
The EPRDBMS (1110) and its Query Execution Engine
(1101) interacts with a Compute Node Plugin (1130) which
has been provided Policy Rules (1120). The Compute Node
Plugin has been instructed (through Policy Rules) to provi-
sion instances on Platforms 1, 2 and 3 (1150, 1160 and 1170).

QEE (1101) makes requests to the Compute Node Plugin
(1130) using the API’s (1131) provided by the Compute Node
Plugin. The various elements of the Compute Node Plugin
(1130) are analogous to, and perform the same functions as
their equivalent elements in FIG. 10.

Policy Rules (1120) instruct the Compute Node Plugin
(1130) how and when to provision instances from each of the
platforms. The Compute Node Plugin interacts with each
platform using the API’s exposed by that platform (1151,
1161 and 1171). As each platform may provide a different
API, the Compute Node Plugin provides a layer of abstraction
between the EPRDBMS and the various platforms, and the
mechanism to implement a policy across a plurality of differ-
ent platforms. The QEE may request compute nodes from a
particular platform and these requests are provided as part of
the API calls supported by the Compute Node Plugin. These
preferences from the QEE may be either requirements that the
Compute Node Plugin must honor, or recommendations that
the Compute Node Plugin may honor at its sole discretion.

The EPRDBMS can allow for the specification of the
policy rules in some format(s) such as, for the purposes of
illustration but not limitation, a plain-text file or an XML file.

25

30

40

45

50

55

16

Further, the invention provides for a mechanism whereby a
user may modify the policy rules dynamically through the use
of'some mechanism(s). One such mechanism is an extension
to the SQL language understood by the EPRDBMS. A SQL
command such as the one shown below may be used to reload
policy rules for the system, for the present connection, or
specify some other scope for the new policy rules.
[RE]JLOAD POLICY RULES [FOR SESSIONISYSTEM]
FROM <PATH:>;

Smart Distributed Transactions

Summary: The cost and complexity of managing consistency
in a distributed system have led to entire architectures that
espouse “relaxed consistency” or entirely eschew the ability
to preserve transaction consistency. Often the “CAP Theo-
rem” is used to justify these simplifications. In practice how-
ever, a large class of commercial applications require the
ability to perform operations as “atomic transactions” where
either the entire multi-step operation is performed, or none of
the operation is performed, but never just a proper subset of
the operation. Successful implementation of these semantics
in a distributed database management system often come at a
high cost. These algorithms are particularly insufficient for
application in systems such as elastic parallel database man-
agement systems where data is not only distributed but also
often stored in a myriad of complex distribution patters for
optimum query processing. Methods and techniques are pre-
sented to ensure data integrity and transaction consistency in
a parallel database management system while dramatically
reducing some of the inefficiencies common to conventional
algorithms.

The Elastic Parallel Relational Database Management Sys-
tem (EPRDBMS) herein distributes data and query process-
ing across a plurality of database management systems. When
applications submit queries to the EPRDBMS, the system
translates these queries into a series of steps that must be
executed on some or all of the underlying database manage-
ment systems, in a specified sequence, in order to accomplish
the intent of the input query.

A class of SQL queries modify data in a database; these
include DELETE, INSERT, UPDATE, and TRUNCATE.
Further, the semantics of Relational Database Management
Systems provide for a “logical transaction” which is a collec-
tion of operations that must be performed on the database and
where the guarantee is that either all the operations must be
performed, or none of the operations are performed, but never
that some but not all of the operations are performed. This is
known as database atomicity and this kind of logical transac-
tion is often referred to as an ‘atomic operation’. This is
particularly important in the case of systems where multiple
operations are performed on different data elements that must
be retained consistent within the database.

In a distributed database, techniques for “distributed trans-
actions” are commonly employed and one popular technique
for this is the “two-phase-commit” (2PC). According to the
rules of a 2PC, each participating node in the distributed
database is informed when a transaction is about to start, and
then a series of operations that form the transaction are per-
formed. Then a component of the 2PC system called a trans-
action-coordinator informs all nodes that they should “pre-
pare to commit”. In response to a message to “prepare to
commit” all nodes must perform any and all operations that
they require in order to guarantee their ability to commit the
operation if so instructed. If a node is not able to guarantee
that it can commit the operation, it shall respond to the trans-
action coordinator with a suitable response indicating such

US 9,064,031 B2

17

inability. Otherwise, it may respond with a response indicat-
ing that it is “prepared to commit”. If the transaction coordi-
nator receives a successful response to the “prepare to com-
mit” command from all participating nodes, then it may
inform them that they should “proceed to commit”. Upon
receiving a “proceed to commit” command, all nodes should
commit the transaction and reply to the transaction coordina-
tor. It is a violation of 2PC for a transaction coordinator to
force a “proceed to commit™ if any participating node replied
with an error in the “prepare to commit” phase. Itis a violation
of 2PC for a participating node to fail to commit when it
receives a “proceed to commit” command, if it previously
replied with an affirmative response to the “prepare to com-
mit”.

Distributed transactions come at a premium because of the
additional messaging that is required between the various
participating entities; the transaction coordinator and the
nodes participating in the transaction, and the fact that there is
no opportunity for parallelism amongst the various opera-
tions involved; the prepare-to-commit and all responses must
complete before the proceed-to-commit begins.

The EPRDBMS described herein provides several ways in
which database tables may be distributed across the plurality
of storage nodes that are part of the system. According to one
aspect, each table is associated with at least one storage
group, and an association with the first storage is established
at the time when the table is created. Furthermore, each table
may be associated with more than one storage group, and the
data for the table may be distributed in a different way across
the storage nodes that are part of each of the different storage
groups, the association between a table and its first storage
group and the distribution of data on the first storage group
being defined at the time when the table is created. At a later
time, a table may then be associated with the same or different
storage groups, and those associations would specify the data
distribution on the newly associated storage group. Further,
different tables in the EPRDBMS may be associated with
different storage groups.

During query processing, the DQP may find it advanta-
geous to use one distribution of a tables’ data in preference to
another one, such a determination being made based on the
query or queries being processed and the operations that are
being performed in those queries. Since the system will main-
tain a representation of data in the table such that changes are
made in a transaction consistent manner, the DQP is free to
choose the distribution and storage nodegroup that is best and
the results of the query would be identical if a different one
were chosen. Without loss of generality, the same query plan-
ning methods used if a table had only a single nodegroup
association may be used if there are multiple storage node-
groups associated with the table except that the DQP now has
more options to consider in picking the preferred QES.

FIG. 12 provides an illustration of this. Seven storage
nodes (1211,1212,1213,1214,1215,1216 and 1217) are part
of this illustration. There are four Storage Groups defined,
SGlincluding Storage Nodes 1211, 1212 and 1213, SG2
including nodes 1213, 1214 and 1215, SG3 including 1214,
1215 and 1216 and SG4 including 1215, 1216 and 1217.
There is no requirement that storage groups must all have the
same number(s) of nodes, or that the nodes be consecutively
numbered. These choices were only made for ease of illus-
tration. Five tables (1231, 1232, 1233, 1234 and 1235) are
also shown. Table T1 (1231) is Broadcast distributed on SG1.
This implies that the system will maintain a consistent copy of
T1 on all nodes that are part of SG1. Table T2 is distributed
according to an Elastic Data Distribution (EDD) on SG2. This
means that the data in T2 is divided based on some determin-

25

40

45

50

18

istic policy, and a part of the data is stored on each of the
Storage Nodes that are part of SG2. Table T3 is EDD on both
SG2 and SG3 which means that a copy of the data in T3 is
EDD on SG2, according to some deterministic policy and an
identical copy of the data is broadcast on SG3. The system
further guarantees that the two copies of data in T3, one on
SG2 and one on SG3 are maintained “transaction consistent™.
Similarly Table T4 is EDD and associated with SG1 and SG3
and distributed according to EDD on SGland EDD on SG3.
Finally T5 is EDD and associated with SG4.

When a table is associated with multiple storage groups, a
copy of the data is stored on the nodes that are part of each
storage group. If] as is the case with table T3 which is asso-
ciated with SG2 and SG3, a copy of the data is stored on SG2
(distributed according to EDD), and a copy of the data is
stored on SG3 (Broadcast). In practice this means that Stor-
age Nodes 3 will have a slice of the data for Table T3 because
Storage Node 3 is part of SG2. Storage Node 4 will have a
slice of data for table T3 because it is part of SG2 but it will
also (in addition) have a complete copy ofthe data for table T3
because it is part of SG3. Finally, Storage Node 5 will have a
slice of data from T3 because it is part of SG2 and will have
(in addition) a complete copy of T3 because it is part of
Storage Group 3. Finally Storage Node 6 will have a complete
copy of T3 as it is part of SG3.

As copies of data for a table may be maintained on a
plurality of storage nodes, a change to a table may require
changes to be made to data on multiple storage nodes in a
transaction consistent manner. When a logical transaction is
performed by a series of queries, the changes that are part of
the logical transaction would, similarly, have to be made to
multiple storage nodes in a transaction consistent manner.

FIG. 13 illustrates the mechanism(s) which may be used to
maintain this transaction consistent view of the data while
also minimizing the occurrence of distributed transactions.
Client application software (1301) connects to the
EPRDBMS. The Controller Node of the EPRDBMS (1301)
includes various components (1302, 1303, 1304, 1305, 1306,
1307,1308 and 1309) and also consists of some Nodes (1350,
1360, 1370 and 1380).

When an application connects to the EPRDBMS, the trans-
action state associated with the connection (1309) is initial-
ized to an initial state.

The Dynamic Query Planner (1302) analyzes each of these
operations and based on information obtained from the Cata-
log Metadata Manager (1306) and the Metadata (1308), gen-
erates Query Execution Steps that are an ordered sequence of
operations that must be performed by Query Execution
Engine (1307) in order to accomplish the intent of the query
submitted by the application. When an operation that modi-
fies data on the storage nodes is received by the EPRDBMS,
the Transaction State (1309) associated with the connection
(1309) is updated to reflect this. During the course of the
transaction each operation that modifies data on the various
Storage Nodes causes updates to the Transaction State (1309)
indicating the Storage Nodes where data was modified.

In the case of tables that are distributed according to an
Elastic Data Distribution (EDD), if the SQL queries that
modify data include information that help the DQP identify
which storage nodes may have data that needs to be updated
by the query, this information is used in the DQP process in
generating the QES on the minimum number of Storage
Nodes required for the operation.

In the EPRDBMS, tables are associated with one or more
storage groups. Data for a single table may therefore be stored
on more than one storage node.

US 9,064,031 B2

19

For example, if an UPDATE is made to table T3 and the
DQP can determine that the change will affect the slice of data
stored on Node 3 due to the distribution of data according to
EDD on SG2, the QES would include operations to update the
data on nodes 3, 4, 5 and 6 because a broadcast copy of the
data is stored on SG3 which resides on nodes 4, 5 and 6. This
would imply that the transaction state associated with the
connection would then be reflected to indicate that the change
was made on storage nodes 3, 4, 5 and 6.

On the other hand, if an UPDATE is made to table T3 the
DQP can determine that the change will affect the slice of data
stored on Node due to the distribution of data according to
EDD on SG2, the QES would include operations to update the
data on nodes 4, 5 and 6 because a broadcast copy of the data
is stored on SG3, which resides on nodes 4, 5 and 6. This
would imply that the transaction state associated with the
connection would then be reflected to indicate that the change
was made on storage nodes 4, 5 and 6.

For example, if an operation was performed that
UPDATED data in tables T2 and T5 within a single transac-
tion, and the DQP was able to determine that the change to T2
would affect the data on the slice on storage node 5 and the
change to T5 would affect the data on the slice on storage
node 5, then these two operations would both update the
transaction state to indicate that the only changes that had
been made affected storage node 5.

If the application indicates that transaction is to be “com-
mitted”, the DQP inspects the transaction state associated
with the connection and determines the number of Storage
Nodes on which data was modified, and that needs to be
“committed” in a transaction consistent manner.

Ifit determines that the transaction need only be committed
ona single storage node, it can issue a simple directed commit
to the single storage node. If it determines that the transaction
needs to be committed on multiple storage nodes, then it
begins the process of distributed transaction on the storage
nodes that have modified data.

Once the transaction is successfully committed, the trans-
action state associated with the connection is cleared to an
initial state.

If the application indicates that the transaction needs to be
aborted or “rolled back”, the DQP inspects the transaction
state associated with the connection and determines the num-
ber of Storage Nodes on which data was modified, and that
needs to be “rolled back” in a transaction consistent manner.

If it determines that the transaction need only be rolled
back on a single storage node, it can issue a simple directed
rollback to the single storage node. If it determines that the
transaction needs to be rolled back on multiple storage nodes,
then it begins the process of distributed transaction on the
storage nodes that have modified data.

Once the transaction is successfully rolled back, the trans-
action state associated with the connection is cleared to an
initial state.

In the example in paragraph [114] above, a commit or
rollback from the application would translate into a distrib-
uted commit or distributed rollback on storage nodes 3, 4, 5
and 6. In the example in paragraph [115] above a commit or
rollback from the application would translate into a distrib-
uted commit or rollback on storage nodes 4, 5 and 6. Finally,
in the example in paragraph [116] above, a commit or roll-
back from the application would translate into a directed
(local or non-distributed) commit or rollback on only storage
node 5.

Out-of-Band Specification of System Metadata
During DDL Operations

Summary: Parallel Database Management Systems have tra-
ditionally required the specification of some additional infor-

10

15

20

25

30

35

40

45

50

55

60

65

20

mation to be used in determining data placement. These
specifications take the form of extensions to the Data Defini-
tion Language (DDL) and therefore necessitate a change in
the application that wishes to utilize the Parallel Database
Management System. Such changes are costly and some-
times infeasible thereby impeding the migration of applica-
tions from an SMP database to an EPRBMS. Methods and
techniques are presented that allow an unmodified applica-
tion to be migrated to operate on parallel database manage-
ment system through the definition of an out-of-band mecha-
nism for metadata specification.

The Structured Query Language (SQL) includes a Data
Definition Language (DDL) that is used to define the various
objects that are stored in a relational database. For example,
the CREATE TABLE command is used to create a table, and
define the columns in the table and their data types and other
attributes.

For example, the below statement creates a table T1 with
three columns A, B and C, and A is an integer, B is a 10
character string and C is a datetime. Further, the DDL defines
A and B to be “NOT NULL”, meaning that no row in that
table is allowed to exist with a NULL value in either column
AorB.

CREATE TABLE T1 (
A INT NOT NULL,
B CHAR (10) NOT NULL,
C DATETIME);

In addition to specifying the geometry of the table (the
columns, their data types and any additional attributes), the
DDL syntax may be extended to include the specification of
other information, as described below.

Some Parallel Database Management Systems have
extended this syntax by allowing the specification of data
distribution. For example, the EPRDBMS herein defines the
following extension to the SQL Standard DDL Specification
for CREATE TABLE as.

CREATE TABLE T1 (
A INT NOT NULL,
B CHAR (10) NOT NULL,
C DATETIME)
DISTRIBUTE ON (A);

In this extended syntax, the DDL defines a table T1 with
three columns A, B and C and indicates that the data is to be
distributed according to an Elastic Data Distribution method
based on the values of column A. As no storage group was
specified, the default storage group associated with the data-
base will be used. This extension to the DDL syntax is an
“in-band” specification of the distribution information.

The EPRDBMS herein augments the DDL Specification in
one other way, and that is through the specification of “out-
of-band” commands as part of the DDL.

When out-of-band DDL extensions are enabled with the
EPRDBMS, the administrator provides the EPRDBMS with
these out-of-band commands in a form and format defined
and understood by the EPRDBMS. This may be in the form of
a simple text file, or maybe some other format.

FIG. 14 illustrates this. When a new SQL Query is received
by the EPRDBMS (1401) it first checks to see whether the
query is a DDL (1402). If it is not, it proceeds with DQP
(1403). On the other hand, if it is a DDL, it looks to see
whether there is an out-of-band specification (1404). If there

US 9,064,031 B2

21

is one, it augments the DDL (1405) and proceeds with DQP
(1403), and if there is not one, it proceeds with DQP directly.

When a system is first installed and initialized, a global set
of out-of-band definitions may be provided to the system.
These out-of-band definitions (if specified) are consulted on
every DDL operation performed on the system. One kind of
DDL operation is the “CREATE DATABASE” command.
When the CREATE DATABASE command is executed, out-
of-band definitions in the system-wide specifications are con-
sulted, and if appropriate, the CREATE DATABASE com-
mand is augmented with some out-of-band specifications.

The EPRDBMS can further extend the syntax of the CRE-
ATE DATABASE command to allow for the specification of
a set of out-of-band definitions to be used when DDL is
executed in the context of that database.

When DDL is executed in the context of a database (such as
the CREATE TABLE command), the EPRDBMS herein first
consults the system-wide out-of-band definitions (if speci-
fied) and attempts to augment the DDL statement, and then
consults the database specific out-of-band definitions (if
specified) and attempts to further augment the DDL statement
before arriving at a fully augmented DDL statement that is
then executed.

Augmentation rules may be specified in the system-wide
specifications and in the database-wide specifications.
Depending on the specifications, the EPDBMS may either
override one set of specifications in favor of the other, or apply
some operation to merge the specifications provided in both
places, or apply some other scheme to determine which set of
augmented specifications to apply and which to ignore in
each instance. To facilitate this, the specifications are defined
in a manner that includes an identification (such as a name),
and other attributes like priorities and other guidelines.

Some augmentation specifications may have some prereq-
uisites and required follow-on. Augmentation specifications
can specify prologues and epilogues. When a DDL command
is received by the EPRDBMS, and a compatible out-of-band
specification is found, if that out-of-band specification con-
tains a prologue rule, the prologue is not immediately
executed but rather added to the list of commands to be
executed, ahead of the present DDL. Similarly, if an epilogue
is found, itis not immediately executed but rather added to the
list of commands to be executed, after the present DDL. The
prologue and epilogue DDL are also processed to determine
whether they require additional out-of-band specifications or
not, and it is possible to specify that an out-of-band specifi-
cation is ‘terminal’ in that it should not be further augmented.
The “terminal’ specification is an example of an attribute of an
augmentation that allows the EPRDBMS to determine the
exact sequence of commands to execute in response to an
incoming DDL when multiple augmentations are specified.

FIG. 15 provides an example of an out-of-band specifica-
tion. This specification is part of a text file that is provided to
the EPRDBMS, and shows the definition of a single out-of-
band specification. This specification is called CUSTOMER-
TABLE and this name (1501) can be used by other specifica-
tions to refer to it. The second line (1502) defines an
OVERRIDE indicating that this specification overrides a
specification by the name SYSTEM.CUSTOMER-TABLE.
The TABLENAME directive (1503) indicates that this speci-
ficationapplies to any table named ‘*CUSTOMER’ where “*’
is the wild-card character. In other words, any table with a
name ending in the word CUSTOMER would be augmented
by this specification. The SIGNATURE directive (1504) fur-
ther restricts the applicability of this specification to tables
that match the specified signature. A signature of a table is
generated by performing some deterministic operation

5

10

15

20

25

30

35

40

45

50

55

60

65

22

defined by the EPRDBMS on the geometry of the table and
provides a simple way to restrict a specification to tables with
a particular geometry. As software applications may change
the schema of a table from release to release thereby altering
the signature, this mechanism allows the specification to tar-
get a specific schema of a table. The PRIORITY directive
(1505) helps the EPRDBMS to sequence this augmentation
specification among a group of augmentations that may be
determined to be required. The PROLOGUE (1506) directive
informs the EPRDBMS that the SPECIFICATION to follow
has a prerequisite and that prologue is specified next. The
syntax specified by the EPRDBMS for this format of the
out-of-band specifications indicates that a ;> or semi-colon
character will be used to end the PROLOGUE statement. The
PROLOGUE itselfis provided (1507, 1508). The out-of-band
specification (1509) directive provides the augmentation that
must be made to the DDL specification matching this particu-
lar rule, and the augmentation in this case is provided (1510).
The END directive (1511) indicates that this ends the out-of-
band specification CUSTOMER-TABLE.

The SPECIFICATION section may define multiple actions
such as to REPLACE, APPEND, ALTER or perform some
other modification to the DDL that is being augmented by the
out-of-band specification. The EPRDBMS may assume a
default action if none is provided, and the default action is
defined by the EPRDBMS.

The EPRDBMS herein thus provides for a mechanism
whereby a user may modify the out-of-band metadata speci-
fications dynamically. One such mechanism is an extension to
the SQL language understood by the EPRDBMS.

[REJLOAD OOB METADATA
SESSIONISYSTEM] FROM <PATH>;

A SQL command such as the one shown above may be used
to reload out-of-band metadata specifications for the system,
for the present connection, or specify some other scope for the
new policy rules.

[FOR

Extended Generational Data Distribution Methods

Summary: Elastic Parallel Database Management Systems
achieve storage elasticity through a technique described as a
generational data store. The placement of data on a storage
nodegroup is determined by use of this generational mecha-
nism that allows for changes in the enrolment in the storage
nodegroup while simultaneously ensuring data co-location.
Methods and techniques for extending the generational place-
ment algorithm are provided to allow for the optimum place-
ment of data on multiple nodes, and providing for the ability
to migrate specific data from one node to another while still
ensuring co-location.

The EPRDBMS utilizes Elastic Data Distribution (EDD)
methods to distribute data over multiple nodes in a group in a
deterministic manner to ensure co-location.

One aspect of this approach is a ‘generational” data struc-
ture, where each generation includes a Distribution Map
(DM) that is used to determine what DV’s were not seen when
the subject generation was the current generation of the EDD.

When an EDD is created, it is in its ‘first generation’ and an
empty DM is created. To determine whether a particular DV
was seen before or not, a sequential scan is conducted of the
DMs beginning with the first DM and progressing till the
current generation of the EDD or the first DM where it cannot
be determined with certainty that the subject DV was not
seen.

The EPRDBMS may add a new generation at any point in
the sequence of generations, not necessarily after the current
generation. According to this aspect, the EPRDBMS may

US 9,064,031 B2

23

create a new generation ahead of the ‘first generation’ giving
rise to a new ‘first generation’. The EPRDBMS may also
create a new generation and insert it between two existing
generations.

When presented with a row of data to be stored into a table
distributed according to an EDD, the EPRDBMS can sequen-
tially scan the DM’s of the EDD starting with the first gen-
eration until it either

(a) encounters a generation where it cannot determine for

sure that it has not seen the subject DV when that gen-
eration was the current generation, or

(b) reaches the current generation.
and the EPRDBMS will store the row of data as it would have
if that generation was the current generation. If a new gen-
eration (A) is created and inserted between two existing gen-
erations (B) and (C), then the sequential scan would progress
through these generations first inspecting generation (B),
then generation (A) and finally generation (C). If a new gen-
eration (A) is created and inserted before the current first
generation (B), then the sequential scan would commence
with generation (A) and then proceed to generation (B).

FIG. 16 illustrates the effects of introducing a new genera-
tion between two existing generations. In this illustration, the
EDD has a DV consisting of two integers. For simplicity, this
illustration assumes that each generation in the “Before” sce-
nario uses a bitmap of 13 bits. The scenario is represented as
a“Before” view on the left (1651) and the “After” view on the
right (1661). In the “Before” view, five generations are
depicted, these are Generation 1 through 5 sequentially cap-
tioned (1601) through (1605) and each generation has its DM
sequentially captioned (1621) through (1625). In the “After”
view, there are six generations, and these are Generation 1
through 6 sequentially captioned (1611) through (1616), and
each generation has its DM sequentially captioned (1631)
through (1636). The newly added Generation 4 (1614) is
labeled as such (1610). The DV (17, 4) when mapped accord-
ing to the rules of this EDD into a bitmap representation such
as (1621) through (1625) or (1631) through (1633), (1635) or
(1636), produces a representation that is shown at the bottom
left of the illustration and is labeled (1671). According to this
illustration, the newly added generation “Generation 47
(1614) has a DM which is a simple list of DV’s and includes
the single DV (17, 4).

According to this aspect, the EPDBMS may relocate all
instances of a given DV but following the process below:

(a) Identify the first generation in the current list of gen-

erations where it cannot be determined for sure that the
subject DV was not seen when that generation was the
current generation, and

(b) Insert a new generation at any point before that genera-

tion with a DM that would indicate that it could not be
determined for sure, that the subject DV was not seen
when that generation was the current generation, and

(c) Associate with that newly created generation, an allo-

cation strategy that would cause all rows with the subject
DV to be placed in the location where the EPRDBMS
would like to relocate this DV, and

(d) Move all rows with the subject DV to the new location.

As depicted in FIG. 16, the bits that would be set in the DM
(bitmap) for the subject DV (17, 4) are as shown in (1671) and
the first Generation where it cannot be determined for sure
that the subject DV was not seen when the subject generation
was the current generation is Generation 4 (1604) in the
“Before” scenario. Therefore, the EPRDBMS inserts a new
Generation 4 (1614) before the old Generation 4 (now Gen-
eration 5 in the “After” scenario and labeled (1615) and
associates with the new Generation 4, a DM (1634) that

10

15

20

25

30

35

40

45

50

55

60

65

24

simply indicates that the only DV ever seen was the subject
DV (17, 4), and then proceeds to relocate all data with the
subject DV to the desired location. In this manner, any sub-
sequent occurrence of the DV (17, 4) will be dispatched
according to the new Generation 4 (1614).

According to another aspect of the system described
herein, the EPRDBMS may choose to relocate multiple DV’s
and it would do so either by repeating the process described
above multiple times, one for each DV or create a single
generation that would dispatch all of the DV’s to be relocated
using a single new generation and a suitable DM, the subject
new generation being inserted into the chain of generations at
any point ahead of the first generation where it cannot be
determined for sure that any one of the subject DV’s had not
been seen when the subject generation was the current gen-
eration. The degenerate case of this insertion would be to
always create a new generation ahead of the current first
generation, thereby creating a new “first generation”, and
performing the relocations of the existing data matching the
subject DV’s.

The newly created generation may have a DM of any form
and that the DM in one generation may have a form and
format different from the form and format of the DM in any
other generation.

Container Based Data Distribution

Summary: Advanced methods for distributing data in a par-
allel database management system suitable for certain classes
ofcomplex schemas are presented. Parallel database manage-
ment systems have long provided the benefits of parallelism
through the distribution of data across a plurality of servers
and by having each server process queries based on its subset
of the data while having all servers process these queries in
parallel and at the same time. Data distribution, the algo-
rithms that determined where to store a row of data for opti-
mum query processing, invariably depended on some
attribute in the row of data (a column, or a group of columns).
In some classes of schema that are commonly in use today,
this mechanism is insufficient. One class of schemas is the
hierarchical schema generally referred to as “person-child-
grandchild” referring to the relationship between entities in a
database that mirror this familial relationship. For optimum
query processing performance, one would like to store the
person entity, the child entity and the grandchild entity on the
same node in the parallel database but schema optimization
techniques such as normalization prevent the grandchild
entity from having an attribute for the person entity thereby
making it impossible to achieve optimal distribution and a
normalized schema at the same time. The techniques
described herein create a new class of distribution methods
that make this possible.

In an EPRDBMS, data in tables is distributed across mul-
tiple nodes that are members of a storage group or storage
groups associated with a table. In data dependent distribution
methods that provide co-location, rows in tables with identi-
cal values for the Distribution Vector (DV) are stored on the
same storage node. This allows for parallelism in query pro-
cessing.

Consider the following two table schema describing the
tables T1 and T2.

T1 (A, B, C, D, E)
EDD: (A)
SG: SGl

US 9,064,031 B2

25

T2 (R, Q R)
EDD: (P)
SG: SG1

For the purposes of this illustration, assume that columns A
and P have identical data types. This implies thatifarow in T1
has a row with A=14, then any row in table T1 with A=14 will
be on the same storage node as the first row. Further, any row
in T2 that has P=14 will also be on the same storage node as
the rows in T1 with a value of A=14.

If the storage nodegroup SGlhas six nodes (Nodes 1
through 6), then the query

SELECT B, Q
FROMT1, T2
WHEREA =P;

could be executed completely in parallel, with each storage
node performing the join based on the rows oftable T1 and T2
that they hold because it can be guaranteed that the rows of T1
and T2 that can be joined (if they satisfy the condition
T1.A=T2.P), will in fact be collocated on the same node.

FIG. 17 presents a schema represented in the standard
Chen notation for Entity Relationship Diagrams, and the
corresponding SQL DDL. Each PROJECT (1701) CON-
TAINS (1702) multiple QUOTATIONS (1703) and each
QUOTATION HAS (1704) multiple ATTACHMENTS
(1705). We know that each PROJECT CONTAINS multiple
QUOTATIONS because in the Chen notation, the numbers
“17” (1721) and “N” (1722) placed on either side of the CON-
TAINS relationship indicate this. Similarly, the “1” (1723)
and “N” (1724) indicate that each QUOTATION HAS mul-
tiple ATTACHMENTS. The SQL DDL for this is shown on
the right beginning with the DDL to create the PROJECT
table (1711) defining the PROJECT_ID to be the PRIMARY
KEY. This is followed by the DDL to create the QUOTA-
TIONS table (1712) which includes the definition of QUO-
TATION_ID as its primary key, a column called PROJEC-
T_ID and the FOREIGN KEY definition (1713) which
indicates that the PROJECT_ID in the QUOTATIONS table
references the PROJECT _ID in the PROJECTS table. Simi-
larly the DDL to create the table ATTACHMENTS (1714)
includes the FOREIGN KEY definition for QUOTA-
TION_ID referencing QUOTATIONS (QUOTATION_ID).

It would be beneficial for the operation of the EPRDBMS
if co-location of ATTACHMENTS data along with the QUO-
TATIONS data could be ensured. To achieve this, the QUO-
TATIONS table and the ATTACHMENTS table would have
to be distributed according to some EDD on the QUOTA-
TION_ID on the same Storage Group, or one of the two tables
would have to be BROADCAST and the other could be EDD
on the same Storage Group. However, it would be ideal if all
three tables, PROJECT, QUOTATIONS, and ATTACH-
MENTS could be co-located for their respective joins on the
foreign key relationships. In order to achieve this, the
ATTACHMENTS table would have to be distributed accord-
ing to the PROJECT_ID.

Normalization of the schema beyond the second normal
form requires that the ATTACHMENTS table not contain the
PROJECT_ID. This is also good practice to eliminate anoma-
lies in the data model.

To achieve co-location of these three tables, the ATTACH-
MENTS data must be distributed according to the PROJEC-
T_ID of its parent QUOTATION.

10

15

20

25

30

35

40

45

50

55

60

65

26

According to one aspect herein, a table can be defined to be
distributed according to data not present in the tables’ rows.
This is achieved through an abstraction of a CONTAINER.
According to this aspect, the Distribution Vector for a table
may consist of some attributes that are not part of that table, or
may even consist entirely of attributes that are not part of that
table.

Accordingly, a CONTAINER is defined to include data for
tables that must be co-located. FIG. 18 illustrates this with a
system with four sites, site01 (1801), site02 (1802), site03
(1803), and site04 (1804). The schema contains four tables,
PROJECT, QUOTATIONS, ATTACHMENT and
ACCOUNTS. In this illustration the PROJECT table is
defined as the CONTAINER BASE TABLE (CBT) and the
data for the CBT is stored the four sites in the slices (1811),
(1812), (1813) and (1814). The QUOTATIONS table is
defined as a CONTAINER MEMBER TABLE (CMT), and
the data for the CMT is stored on the four sites in slices
(1821), (1822), (1823), and (1824). The ATTACHMENT
tableis defined as a CONTAINER MEMBER TABLE (CMT)
and the data for the CMT is stored on the four sites in slices
(1831), (1832), (1833), and (1834). Finally, the ACCOUNTS
table is defined to be distributed according to the BROAD-
CAST distribution model, and therefore four identical slices
of data are stored in (1841), (1842), (1843), and (1844).

A CBT is atable that forms the basis of the CONTAINER
based data distribution model. Data in that table is distributed
using some distribution model on storage nodes that form part
of an associated storage group. A CONTAINER ELEMENT
(CE) is a row in the CBT. The CONTAINER DISTRIBU-
TIONVECTOR (CDV)is the DV of the CE. A CONTAINER
MEMBER TABLE (CMT) is a table that participates in con-
tainer based data distribution according to some CBT. A client
connection to the EPRDBMS has connection specific con-
text, and one of those items of context is the CONTAINER
CONTEXT (CO).

According to one aspect herein, data for a CMT shall be
stored co-located along with the data for the appropriate data
in the CBT, through the mechanism of CONTAINER BASED
DATA DISTRIBUTION, and the extension of the definition
of'a DV of a table to include attributes that are not part of the
table itself.

FIG. 19 provides an illustration of the DDL used in defin-
ing such a container based data distribution. A CONTAINER
is defined first (1901) and a storage group (defaults) is asso-
ciated with the CONTAINER. Step (1901) defines a container
called pContainer. Next, the CONTAINER BASE TABLE
(CBT) is defined in step (1902) and this table is defined to be
distributed according to an EDD on the column (project_id)
and the association with the container pContainer is estab-
lished through the declaration “DISCRIMINATOR FOR
CONTAINER pContainer”. Steps (1903) and (1904) define
CMT’s QUOTATIONS and ATTACHMENT and their distri-
bution as CMT’s is defined in the declaration “CONTAINER
DISTRIBUTE pContainer”. Finally, a table ACCOUNTS is
defined to be BROADCAST distributed on the storage group
defaults.

According to one aspect of the EPRDBMS herein, each
connection to the system has associated with it the Container
Context (CC) for each container defined on the system. The
CC for each container may be one of the NULL Context, the
GLOBAL Context, the AUTOMATIC Context, or a specified
Container Context.

We first describe the operation of the system in the NULL,
GLOBAL and SPECIFIED Container Contexts, and then

US 9,064,031 B2

27
describe the AUTOMATIC Container Context which is a
hybrid mode of operation that extends the other three con-
texts.

According to one aspect herein, when a system is operating
in the NULL Context, the system operates in a manner that
reflects that CBT’s are distributed according to their stated
distributions, and that all CMT’s are random distributed on
the storage group associated with their container. All tables
not part of the container system are assumed to be distributed
according to their stated distributions.

FIG. 20 shows the decisions that the DQP will make in each
of the provided instances in the NULL Container Context
(NULL-CCQ). FIG. 20 continues on the illustration in FIGS.
18 and 19. The first query (2001) provides an illustration of
the mechanism to assign the NULL-CC as the current context
with respect to the container pContainer. The next query
(2002) selects all data from the PROJECTS table and the
DQP determines that the query must be executed on sites
site01, site02, site03 and site04. The next query (2003) joins
the table PROJECTS with the table ACCOUNTS based on the
ACCOUNT_ID column in both tables. As the table
ACCOUNTS is broadcast distributed on the same storage
group as the table PROJECTS, this join can continue com-
pletely in parallel as an identical copy of the data in the
ACCOUNTS table found in each slice (1841), (1842),
(1843), and (1844). The last query (2004) joins the table
PROJECTS with the table QUOTATIONS based on the PRO-
JECT_ID column in both tables. While QUOTATIONS is a
CMT, and CONTAINER DISTRIBUTED according to
pContainer, since the system is operating in the NULL Con-
tainer Context (NULL-CC), the DQP does not recognize this
fact. It therefore assumes that rows of data in PROJECTS and
QUOTATIONS are not co-located for the purpose of this join.

FIG. 21 shows the decisions that the DQP will make in each
of'the provided instances in the GLOBAL Container Context
(GLOBAL-CC). FIG. 21 is a continuation of the illustrations
in FIGS. 18 and 19. The first query (2101) provides an illus-
tration of the mechanism to assign the GLOBAL-CC as the
current context with respect to the container pContainer. The
next query (2102) selects all data from the PROJECTS table
and the DQP determines that the query must be executed on
sites site01, site02, site03 and site04. The next query (2103)
joins the table PROJECTS with the table ACCOUNTS based
on the ACCOUNT_ID column in both tables. As the table
ACCOUNTS is broadcast distributed on the same storage
group as the table PROJECTS, this join can continue com-
pletely in parallel as an identical copy of the data in the
ACCOUNTS table is found in each slice (1841), (1842),
(1843), and (1844). The last query (2104) joins the table
PROJECTS with the table QUOTATIONS based on the PRO-
JECT_ID column in both tables. As QUOTATIONS is a
CMT, and CONTAINER DISTRIBUTED according to
pContainer, since the system is operating in the GLOBAL
Container Context (GLOBAL-CC), the DQP does in fact
recognize this fact. It therefore assumes that rows of data in
PROJECTS and QUOTATIONS are co-located for the pur-
pose of this join.

FIG. 22 shows the decisions that the DQP will make in each
of the provided instances in the Specified Container Context
(SPECIFIED-CC). FIG. 22 is a continuation of the illustra-
tions in FIGS. 18 and 19. The first query (2201) provides an
illustration of the mechanism to assign the SPECIFIED-CC
as the current context with respect to the container pCon-
tainer. This query assigns the current context with respect to
pContainer to be (7). As illustrated in FIG. 18, project 7 is
stored on site 02. Once the SPECIFIED-CC is established, the
DQP will target future queries to any tables that are part of this

10

30

40

45

55

28

pContainer context to only site02. The next query (2202)
selects all data from the PROJECTS table and the DQP deter-
mines that the query must be executed on sites site02, only
because it is operating in SPECIFIED-CC (7). The next query
(2203) joins the table PROJECTS with the table ACCOUNTS
based on the ACCOUNT_ID column in both tables. As the
table ACCOUNTS is broadcast distributed on the same stor-
age group as the table PROJECTS, this join can continue
completely in parallel as an identical copy of the data in the
ACCOUNTS table is found in each slice (1841), (1842),
(1843), and (1844). However, as it is operating in SPECI-
FIED-CC (7), the query is only sent to site02. The last query
(2204) joins the table PROJECTS with the table QUOTA-
TIONS based on the PROJECT_ID column in both tables. As
QUOTATIONS is a CMBT, and CONTAINER DISTRIB-
UTED according to pContainer; since the system is operating
in the Specified Container Context (SPECIFIED-CC (7)), the
DQP does in fact recognize this fact. It therefore assumes that
rows of data in PROJECTS and QUOTATIONS are collo-
cated for the purpose of this join and further restricts the query
to site02, the site where the CDV directs it.

FIG. 22 illustrated one way to enter the SPECIFIED-CC.
FIG. 23 illustrates another such mechanism. As illustrated
there, query (2301) inserts a row into the PROJECTS table
with a PROJECT_ID of 20. As PROJECTS is a CBT of
pContainer this operation sets the system into the pContainer
CC of SPECIFIED-CC (20). For the purposes of this illustra-
tion, assume that the EDD of the PROJECTS table determines
that the row with PROJECT _ID=20 must be stored on site03.
The next query (2302) inserts a row of data into the QUOTA-
TIONS table. As the QUOTATIONS table is a CMT based on
the pContainer container, the row is stored into the slice ofthe
QUOTATIONS table on site03, the location identified by
SPECIFIED-CC (20). Query 2303 inserts another row of data
into the PROJECTS table causing it to transition to the
SPECIFIED-CC (21). For the purposes of this illustration,
assume that the EDD of the PROJECTS table determines that
the row with PROJECT_ID=21 must be stored on site04. The
following two INSERTS (2304), and (2305) will therefore be
sent to the slice(s) of those two tables on site04.

In the case of more complex schemas it is possible that
there may be multiple hierarchies such as the illustration in
FIG. 24. In this illustration, tables C and D (2403) and (2404)
are related by the relationship R (2413) and this is a many to
many relationship. The tables C, B and A (2403), (2402) and
(2401) have a hierarchical 1-N relationship as illustrated by
the relationships Q (2412) and P (2411). Similarly the tables
D, E and F (2404), (2405) and (2406) have a 1-N relationship
as illustrated by the relationships S and T (2414), (2415). The
equivalent DDL for this is illustrated on the right with state-
ments (2421) through (2426) which create each of the tables
A through F and define their key relationships.

The ER diagram and DDL as shown in FIG. 24 can be
converted into a CONTAINER BASED distribution as illus-
trated in FIG. 25. Two containers, cContainer and dContainer
are defined (2501), and (2502). For the purposes of illustra-
tion, cContainer was associated with the storage group sgl
and dContainer was associated with the storage group sg2. In
practice, the two containers could have also been associated
with the same storage group. The DDL statements (2503)
through (2506) define the CMT’s E, F, A and B respectively
and the DDL statements (2507) and (2508) define the CBT’s
C and D respectively.

With this setup, queries that only reference tables in a
single container, queries that reference only tables in the
cContainer (A, B, C), or queries that reference only tables in

US 9,064,031 B2

29
the dContainer (D, E, F) are handled by the DQP in a manner
analogous to the illustrations in FIGS. 20, 21, 22 and 23 and
as described above.

According to one aspect herein, a connection to the
EPRDBMS can have a CC relative to the cContainer andaCC
relative to the dContainer and this CC is stored in the connec-
tion state associated with the connection. When a query is
received by the EPRDBMS on this connection, references to
tables in each container group (in the illustration of FIGS. 24
and 25 that is cContainer group consisting oftable A, B, C and
dContainer group consisting of D, E, F) are planned based on
their respective container context.

FIGS. 26 and 27 provides some examples of this. The two
queries (2601) in FIG. 26 establish the NULL-CC for cCon-
tainer and dContainer and (2602) performs a join of tables B,
C, D, and E. Since the NULL-CC has been established for
both containers, the DQP concludes that the join between B
and C, and the join between D and E are not collocated. The
query plan generated for this query would therefore require
the redistribution of B and C to perform the join between
them, the redistribution of C and D to perform the join
between them, and the redistribution of those two results to
perform the join between C and D. The query (2603) estab-
lishes NULL-CC for the cContainer, but a specified-cc for the
dContainer and issues the query (2604). Accordingly, the
DQP will assume that tables B and C are not co-located for the
join, but that tables D and E are not only co-located for the
join, but the join between D and E is further restricted to the
node (in sg2), where the value DID=14 resides. Query (2701)
establishes the specified-cc for both containers and then
issues the query (2702). The DQP will assume that tables B
and C are co-located for the join and further restrict the join to
the storage node (in sg1), where the value of CID=16 resides.
The DQP will also assume that the tables D and E are co-
located for the join and further restrict the join to the storage
node (in sg2), where the value of DID=19 resides. Finally
query (2703) establishes the GLOBAL-CC on the cContainer
and the specified-cc on the dContainer. When query (2704) is
issued, the DQP assumes that tables B and C are co-located
for the join and performs the join between them on all nodes
in sgl (global-cc). Further, it assumes that tables D and E are
co-located for the join and restricts the join to the node of sg2,
where the value DID=19 resides. As the query further speci-
fies DID=19 as a restriction, other values of DID that reside
on this node are excluded from the result set.

According to this aspect of the system, the container con-
text for each container on the system can be changed inde-
pendently, and without any impact on the other container
contexts associated with the connection.

According to another aspect of the system, all queries (and
not just SELECT’s as illustrated above) accessing data in
tables participating in a container are restricted based on the
established container context.

According to a further aspect herein, the system supports a
mechanism for relocation of a row in the CBT. To accomplish
this, and maintain co-location of data, one must also relocate
all data in CMT"s that correspond to the row in the CBT being
relocated.

According to another aspect, the AUTOMATIC Context is
a hybrid context where the system may either operate in the
NULL Context or the GLOBAL Context for all queries
manipulating existing data, and performs automatic detection
of context for insertions into the CBT as described above, and
further performs automatic detection of context of the
SPECIFIED-CC for addition of data into CMT’s.

10

15

20

25

30

35

40

45

55

60

30

We now describe the aspects of the system relating to the
automatic detection of SPECIFIED-CC for addition of data
into CMT’s.

Consider the relationships between the tables PROJECT,
QUOTATIONS, and ATTACHMENTS described in FIG. 17,
and above, and the CONTAINER based representation in
FIGS. 18 and 19 that are described above. Further assume that
the system is operating in the AUTOMATIC-CC established
as below.

USING CONTAINER pContainer (AUTOMATIC);

Now assume that a user inserted a row into the table QUO-
TATIONS as illustrated in FIG. 28. The INSERT statement
itself is shown on FIG. 28 as (2801). The process of perform-
ing the INSERT is described below and starts at step 2801. A
valid INSERT statement has been received and the DQP
process first inspects the statement to determine whether the
insertion is into a CMT or not (2802). If not then the row will
be dispatched to its correct storage node based on the rules for
anon-container based table or CBT as appropriate (2803). On
the other hand, if it is found to be a CMT, the system will
verify whether a valid DISPATCHING RULE (dispatching
rules are described in the following sections) is found (2804)
and if not, an error is generated (2805). If a dispatching rule is
found, then the row is sent to the storage node indicated by
that rule.

As described above, the system relies on a DISPATCHING
RULE to determine where to send data during AUTOMATIC-
CC operation when an insertion is performed in a CMT.
According to one aspect herein, the EPRDBMS defines an
extension to the DDL syntax for table creation that allows for
the definition of dispatching rules. According to one aspect,
these dispatching rules may be specified in-band or out-of-
band (out-of-band definitions are described in detail starting
in paragraph [124] below). According to another aspect, the
EPRDBMS defines an extension to the syntax of the SQL
statement to allow for the definition of a dispatching rule for
the row(s) being inserted.

A foreign key relationship is a simple example of a dis-
patching rule. Consider again the example of FIG. 28, and the
DDL for the various tables involved as described in FIG. 17.
The DDL for the QUOTATIONS table included the following
FOREIGN KEY (PROJECT_ID) REFERENCES PROJECT
(PROJECT_ID);

In a container based distribution such as this one, the row in
the QUOTATIONS table should be co-located with the row in
the PROJECTS table.

In the illustration in FIG. 28, the insert statement (2801)
identifies the PROJECT_ID 19 and the EPRDBMS can use
this information to determine that the row being inserted must
be placed on the same storage node where the row with
project_id 19 resides. Referring back to FIG. 18, we see that
the project_id 19 resides on site04 (1804) as depicted by the
project_id’s shown in the slice of the project table on that site
(1814).

Accordingly therefore, the EPRDBMS can dispatch the
subject row being inserted into the QUOTATIONS table to
site04.

FIG. 29 extends on the illustration in FIG. 28 and shows the
operation of the system in AUTOMATIC-CC when a row of
data is inserted into the ATTACHMENTS table. The row
being inserted is shown (2901) and the row references QUO-
TATION_ID 74. The DQP inspects the query to determine
whether the table is a CMT (2902). If the table is not a CMT,
processing would have resumed at 2903 but since ATTACH-
MENTS is a CMT, processing resumes at 2904. As a FK
relationship is found, no error (2905) is generated and pro-
cessing resumes at 2906.

US 9,064,031 B2

31
As the dispatching rule is a FK, the system inspects the FK.

FOREIGN KEY (QUOTATION_ID)
REFERENCES QUOTATIONS (QUOTATION_ID);

As the QUOTATION_ID is 74 (the same QUOTA-
TION_ID inserted in FIG. 28), the system determines that the
QUOTATION_ID is valid and dispatches this row to site04,
the location where the QUOTATIONS row was dispatched in
FIG. 28.

According to one aspect, the EPRDBMS supports exten-
sions to the INSERT SQL syntax to allow for the definition of
a dispatching rule if an FK relationship is not found. One
situation where an FK relationship is not sufficient for the
definition of a dispatching rule is the case of a polymorphic
schema.

FIG. 30 provides an illustration of one such situation that
cannot be represented using the standard SQL FK relation-
ship. A PROJECT (3001) CONTAINS (3002) many
INVOICES (3003), QUOTATIONS (3004), REPORTS
(3005), PLANS (3006), or COMPLAINTS (3007), each of
which HAS (3008) many ATTACHMENTS (3009). In this
situation, the standard SQL grammar allows for the definition
of the CONTAINS relationship as a FK relationship in the
various tables INVOICES, QUOTATIONS, REPORTS,
PLANS and COMPLAINTS but does not have a mechanism
for defining the relationship HAS between ATTACHMENTS
and these same tables and this is depicted in FIG. 30 by
showing dotted lines between HAS (3008) and the respective
tables while the FK relationships to the PROJECT table
through CONTAINS are shown as solid lines.

FIG. 31 illustrates the schematic representation of this
using SQL extensions provided by the EPRDBMS described
herein. The definition of the container, the CBT and the tables
QUOTATIONS, REPORTS, INVOICES, PLANS and COM-
PLAINTS is shown (3101). The extension related to the
POLYMORPHIC KEY is shown in 3102 in the definition of
the table ATTACHMENT. In this illustration, two columns
rel_type and rel_id are used, and a rule (a_rule) is shown. The
dispatching rule for this table is therefore

POLYMORPHIC KEY a_ rule (rel__type, rel__id)
CONTAINER DISTRIBUTE pContainer

FIG. 32 shows an illustration of the polymorphic key
a_rule referenced in (3102). The definition begins with the
SQL DDL extension “CREATE POLYMORPHIC KEY”
which defines a rule (3201) and indicates that a_rule has two
parameters called TYPE and ID. When the TYPE has the
value of ‘QUOTATIONS” (3202) then the POLYMORPHIC
KEY becomes a FK relationship to the table QUOTATIONS
(3203 and 3204). Similarly when the TYPE has the values
INVOICES, PLANS, COMPLAINTS or REPORTS, the
POLYMORPHIC KEY becomes the FK relationships to the
appropriate table(s) as in (3205, 3206, 3207 and 3208).

When operating in the AUTOMATIC-CC, if a row were
inserted into the table with the value of
rel_type="COMPLAINTS?’, then the dispatching rule would
use the polymorphic key a_rule to determine that the rel_id
provided in the insert is to be treated as an FK relationship to
the COMPLAINTS table and the row would be dispatched
according to the location of the row in the COMPLAINTS
table with that same id.

Redistribution Reduction in EPRDBMS

Summary: Parallel Database Management Systems provide
the benefits of parallelism by distributing data and processing

10

15

20

25

30

35

40

45

50

55

60

65

32

onto a plurality of processing nodes and having each node
process the subset of data stored thereon. Optimum data
placement (called data distribution) is important in making
this possible. Not all queries that are presented to the system
can operate optimally because a data distribution for one set
of queries may turn out to be sub-optimal for another set of
queries. In order to process queries it is sometimes required
that data from multiple nodes be brought together first and in
parallel database management systems this operation is often
referred to as redistribution. Redistribution reduces the ben-
efits of parallelism and therefore a reduction of the amount of
data being redistributed is vital to the efficient operation of a
parallel database management system. Methods and tech-
niques for reducing data redistribution are presented.

As an EPRDBMS distributes data for user tables across a
plurality of Storage Nodes, and Parallelism is achieved by
having the EPRDBMS generate Query Execution Steps
(QES) that are executed in a specified sequence on a specified
node (Storage Node or Compute Node, for example) or
nodes, in parallel and at the same time, it also defines mecha-
nisms for data distribution (such as Flastic Data Distribution)
to ensure the co-location of data. When two tables are joined
in a SQL query and the data for the tables is co-located for the
join, the join operation can perform in parallel on the storage
nodes. However, if the data is not co-located for the join, then
the DQP process will introduce redistribution operations on
the incoming streams to the join, to ensure that the data being
joined is in fact co-located for the purpose of the join.

An aspect of the EPRDBMS is the use of Compute Nodes
as an elastic resource to facilitate these kinds of operations
requiring data redistribution.

Assume that two tables T1 and T2 are joined in a query
such as this one below.

SELECT T1.A, T2.B
FROM T1, T2
WHERE T1.X =T2.Y;

Assume further that T1 and T2 are not distributed in a
manner that is co-located for the purposes of the join
(T1.X=T2.Y). This may be for one of many reasons, such as
that T1 and T2 are not on the same Storage Group, or that one
of T1 or T2 is distributed according to a random distribution,
and so on. In order to execute this query, the EPRDBMS must
perform a redistribution operation to generate copies of the
data required for the join, where the join can be performed in
parallel on some collection of nodes (Storage Nodes or Com-
pute Nodes), that are part of the system.

FIG. 33 illustrates one possible plan (QES) for the query
shown in [198] above.

The first REDISTRIBUTE operation (3301), performs
some deterministic computation on (X) and redistributes the
data in table T1 (columns A and X) onto the various nodes
(compute nodes) in the DEFAULT-COMPUTE nodegroup,
associated with the connection. The second REDISTRIB-
UTE operation (3302) performs some deterministic compu-
tation on (Y), and redistributes the data in table T2 (columns
B and Y) onto the various nodes (compute nodes) in the
DEFAULT-COMPUTE nodegroup, associated with the con-
nection. The third EXECUTE operation (3303) then performs
the join between TEMP1 and TEMP2 that were created in the
above two operations, and on the default compute nodegroup
associated with the connection. Since the REDISTRIBUTE
operations determined where (on which compute node in the
default compute nodegroup) to place each row from tables T1
and T2 based on a deterministic operation performed on X

US 9,064,031 B2

33

andY (the join columns), it can be guaranteed that any row in
T1 with a value of X that matched some row in T2 with the
same value of Y would be such that the two rows would be on
the same compute node.

Assume that table T1 has 100 rows, and the possible values
of X range between 1 and 100, and further assume that table
T2 has 100,000 rows and the possible values of Y range
between 1 and 100,000. According to the QES provided
above, the EPRDBMS would redistribute 100 rows (from T1)
into the nodes on the compute nodegroup associated with the
connection, and then proceed to redistribute 100,000 rows of
data (from T2) into the nodes on the compute nodegroup
associated with the connection. In total, this would result in a
redistribution of 100,100 rows of data into the compute
group. Then the join would be executed and would not use the
rows from TEMP2 with values of Y between 101 and 100,000
because no rows in TEMP1 have a corresponding value of X.
The cost of redistribution of this unused data includes the cost
ofunnecessarily reading of the data from table T2, the cost of
moving the data from its storage node of origin to the compute
node in the default compute nodegroup, the cost of storing it
on the compute node, and the cost of then reading that data as
part of the join between TEMP1 and TEMP2.

According to one aspect of the EPRDBMS herein, the
amount of data redistributed as part of query processing (not
necessarily just joins, though joins have been used in the
illustration above) is materially reduced through the use of
redistribution-inclusion-lists. According to this aspect, and
further using the example provided above, during the first
REDISTRIBUTE operation on table T1, the EPRDBMS con-
structs a list of values of T1.X that were redistributed into the
compute nodegroup and this list is then used to augment the
second REDISTRIBUTE operation to ensure that only those
values of T1.X which were seen in the first redistribution are
now redistributed into TEMP2.

Accordingly, FIG. 34 illustrates the query execution steps
for this plan.

Observe that the first REDISTRIBUTE operation (3401)
generating TEMP1 from table T1 also produces the INCL.U-
SION-LIST called LIST-X which is then used to restrict the
values from table T2 thatare REDISTRIBUTED as part of the
second operation (3402).

FIG. 35 illustrates another perfectly viable plan for execut-
ing this query. The first redistribute operation (3501) materi-
alizes TEMP2 and produces the INCLUSION LIST that can
then be used in the second redistribute operation (3502) that
produces TEMP1 which would then be followed by the join
between TEMP1 and TEMP2 (3503) that produces the results
of the query as expected by the user.

However, LIST-Y would include 100,000 values and in
generating LIST-Y, the whole table would have been redis-
tributed thereby providing no benefit.

One aspect of the EPRDBMS is that the DQP uses histori-
cal data and heuristics to determine the sequence in which to
perform the steps in the QES (if multiple orderings are pos-
sible) in order to generate the sequence that is most efficient,
and this includes the optimization of the order of steps to
produce the most effective INCLUSION LISTS.

The INCLUSION LIST is generated during an operation
that processes data, and may be generated either by the nodes
originating the data or the nodes that are consuming the data.

In the example above, assume that the table T1 is on storage
group SGlconsisting of nodes N1, N2 and N3, and further
that the compute nodegroup associated with the connection is
CN consisting of nodes N4, N5, N6 and N7.

10

15

20

25

30

35

40

45

50

55

60

65

34

When the Query Execution Step (below) is executed, data
on storage nodes N1, N2 and N3 are read and redistributed to
N4, N5, N6 and N7.

REDISTRIBUTE INTO TEMP1 (A, X)

ONTO DEFAULT-COMPUTE (X)
GENERATE INCLUSION-LIST (X) AS LIST-X
SELECT A, X FROM T1;

As rows of data are received by nodes N4 . . . N7, they can
each generate a list of values of X that were received by them,
and upon notification that all data from T1 has been read and
redistributed, the nodes N4 . . . N7 can each send the list of
values of X that they received to the Query Execution Engine
for inclusion in the subsequent step that scans T2.

Equally, nodes N1, N2 and N3 can generate a list of values
of X that they are redistributing, and when they have com-
pleted scanning their slice of table T1, they can send their part
of'the inclusion list to the Query Execution Engine for inclu-
sion in the subsequent step that scans T2.

The EPRDBMS thus implements both of these mecha-
nisms for the generation of the INCLUSION LIST, where it is
generated by the originator or where it is generated by the
receivers.

Broadly speaking, an INCLUSION LIST is a data structure
used by the EPRDBMS that is generated in one step in the
QES and used to augment a subsequent step in the QES with
additional filtering that will serve to reduce the overall cost of
the query execution by identifying rows that should be pro-
cessed further, and those rows that need not be processed
further.

The operation utilizing the INCLUSION LIST may utilize
the list directly as a filter in the SQL sent to the database onthe
target nodes where the query execution step is being
executed, or as a filter applied by the Query Execution Engine
as part of the subsequent processing of the data by the
EPRDBMS.

The data structure used to implement an INCLUSION
LIST may be a simple list, enumerating all values that are part
of'the list. When there are a large number of entries in the list,
it may be more efficient to use some other data structure than
alist. One such mechanism to generate an INCLUSION LIST
is through the use of a bitmap where each bit in the bitmap
represents some value to include in the list.

For example, assume that the values in an inclusion list
were integers in the range 1 to 1000, a bitmap of 1000 bits
could be used where the i’th bit represented the value (i).

According to one aspect herein, an INCLUSION LIST
may include ‘false-positives’ but never include ‘false-nega-
tives’. In other words, an INCLUSION LIST that specifies
more values than required is sub-optimal but perfectly func-
tional. However an INCLUSION LIST that fails to include
some values is not permissible.

According to this aspect, an INCLUSION LIST may be a
bitmap of some size (N). When a value of ‘X’ needs to be
added to the list, a deterministic hash (CRC, for example) of
x is first computed and then the Modulus operation is used to
reduce the value of HASH(X) to a value in the range of [0,
N-1] and that bit in the bitmap is used to represent the value
“x’. The bit may be determined by a formula such as:

MODULUS (HASH(x), N)

When using this method, an initial INCLUSION LIST
consisting of N bits is initialized to include all bits of some
initial value. To record the inclusion of a particular value in

US 9,064,031 B2

35

the bitmap, the bit corresponding to the value (as determined
above) is set to the non-initial value.

Once all values of the list have been set in the bitmap, it can
be used in a subsequent step in the QES to determine whether
a particular value should be processed further or not as fol-
lows. For example, assume that the value ‘y” is being evalu-
ated. We first compute MODULUS (HASH(y), N) and deter-
mine whether the corresponding bit is set to the non-initial
value. If it is, then that value may have been encountered
during the creation of the list and appropriate actions can be
taken.

One useful attribute of this mechanism of computing the
INCLUSION LIST is that it can be computed in parallel by
multiple nodes, and then combined by the Query Execution
Engine to generate the final inclusion list.

According to one aspect, the inclusion list is computed by
the receiver nodes of the data. As illustrated above, nodes N4,
N5, N6 and N7 would maintain lists as they received data
from nodes N1, N2 and N3 as part of the redistribution of
table T1. By prior agreement, nodes N4 . . . N7 would use a
bitmap of N bits with a common initial value (say 0) and set
some of the bits in the bitmap to 1 based on the rows of data
that they received, and as described above. When all data has
been received, they each send their bitmaps to the Query
Execution Engine. Assume that these bitmaps are B4, B5, B6
and B7 respectively. The Query Execution Engine computes
the INCLUSION LIST bitmap B, a bitmap of N bits as fol-
lows:

B=B4|B5|1B6|B7

“p

where “|” is the bitwise OR operation

Therefore bit (i) in the bitmap B will be set to the value of
1 ifand only if it was set to 1 in one of the bitmaps B4, B5, B6
or B7.

According to one aspect, the data structure maintained by
each of the nodes generating a portion of the INCLUSION
LIST based on the data they process may not be amenable to
this simple mechanism for consolidation. In that case, the
data structure generated by the Query Execution Engine may
be merely a reference to the individual data structures gener-
ated. Using the illustration above, if nodes N4 . . . N7 gener-
ated some data structures DS4, DS5, DS6 and DS7, the Query
Execution Engine may generate the INCLUSION LIST
merely as (DS4, DS5, DS6, DS7). When a subsequent step
wishes to use this list, it would determine whether a given
value was seen during the generation of the list by following
the same steps that were used by nodes N4 . . . N7 in encoding
the data structure and then sequentially inspecting the data
structures DS4 . . . DS7 till a positive indication is found that
the subject value was seen in the preceding step.

According to another aspect herein, the INCLUSION
LIST may be constructed as follows. Each of the participating
slices generates M bitmaps, each with N, bits. For each value
x that they encounter, they set multiple bits as follows:

In the i’th Bitmap (called b,) set the bit corresponding to

MODULUS (HASH,(x), N,)

where N, is the size of the i’th bitmap.

In this scheme with M bitmaps, M different hashing algo-
rithms are used. It is not necessary that these be M distinct
hashing algorithms but if HASH, is the same as HASH for
some values i, and j, then it is required that N,=N,. Assuming
that there are ‘I’ nodes numbered 1 through ‘I’, then the
INCLUSION LIST computed by the Query Execution
Engine shall be computed as follows

B=bylbyslbss ... by,

15

20

25

30

40

45

50

55

65

36

Where °I” is the logical OR operator, and b,; is the i’th
bitmap from node j’

And the INCLUSION LIST shall consist of

(B,,B,,...B)

According to another aspect herein the data structure used
to generate the inclusion list may be a bitmap with N bits, and
where each of the generating nodes produced a bitmap with N
bits as follows. For each observed value that is to be included
in the list, multiple bits are set in the bitmap. Assume that ‘m’
hashes are used, then the occurrence of a single value in the
list would be recorded by setting the following bits.

MODULUS(HASH,(x), N)

The Query Execution Engine would consolidate the bitmaps
received from each of the ‘1’ participating nodes and generate
a single bitmap B as

B=B,|B,IB,... B,

Through the use of INCLUSION LISTS, the EPRDBMS
herein reduces the amount of data that must be processed. It
finds application in a wide variety of queries including (but
not limited to) joins, aggregations and sorting.

The teachings of all patents, published applications and
references cited herein are incorporated by reference in their
entirety.

While this invention has been particularly shown and
described with references to example embodiments thereof, it
will be understood by those skilled in the art that various
changes in form and details may be made therein without
departing from the scope of the invention encompassed by the
appended claims.

The invention claimed is:

1. A database management system comprising:

a) a network interface, for receiving database queries from
two or more client applications, the client applications
operating on two or more user client computers, provid-
ing at least one connection into the system for each such
client application;

b) a group of two or more operational nodes for executing
the queries as database operations, each operational
node implemented as a logical collection of software
components that execute on one or more physical
machines;

¢) one or more operational nodes being designated as stor-
age nodes;

d) one or more storage nodes grouped into storage node-
groups wherein the system is further configured and
operates such that

e) client applications establish connections with the system
and interact with the system in a query language;

f) user data is stored in tables, and tables are grouped into
databases;

g) tables are associated with storage nodegroups, and
wherein data for a given table is stored on the storage
nodes that are part of the storage nodegroup associated
with the given table;

h) data in tables is distributed across the various nodes in
the associated storage nodegroups based on various data
distribution methods wherein some data distribution
methods are data dependent where each node contains a
horizontal partition of the data in the table and where the
nodes in the storage nodegroups collectively have all the
data for the table, and wherein other data distribution
methods are data independent distribution methods
where each node contains some or all of the data in the
table;

i) a row of data in a table distributed according to a data
dependent distribution is stored on a node based on a

US 9,064,031 B2

37

value of a distribution vector (DV) which may consist of
columns in the row, or attributes that are not columns of
the row, or determined based on the values of some
columns of the row;

j) two or more rows in a single table with identical distri-
bution vectors are stored on the same storage node
achieving co-location of data in the two or more rows;

k) two or more rows in two tables associated with the same
storage nodegroup and having identical distribution vec-
tors are stored on the same storage node achieving co-
location of data in the two or more rows in two tables
associated with the same storage nodegroup;

1) one or more tables are defined as Container Base Tables
(CBT’s) and whereby the values of specified columns in
the CBT defined as the DV of the CBT are used as the
DV for all other tables that are defined to be Container
Member Tables (CMT) controlled by the subject CBT;

m) rows inthe CMT are stored on the storage node based on
their DV, which is the DV of a uniquely determined row
in the CBT thereby achieving co-location of data in the
CMT with the corresponding row of the CBT; and

n) whereby when a table is defined as a CBT a named
container is established, and whereby other tables may
be defined to be CMT’s that are part of the named con-
tainer.

2. The system of claim 1 further operating with multiple
containers at the same time.

3. The system of claim 1 further operating in different
Container Contexts with respect to each named container,
including a NULL Context (NULL-CC), a Global Context
(Global-CC), and/or a Specified Context (Specified-CC).

4. The system of claim 1 wherein a persistent state is
associated with each connection established by a client appli-
cation with the system, and the container context with respect
to each container is associated with each connection as part of
the persistent connection state associated with the connec-
tion.

5. The system of claim 1 further wherein a client applica-
tion connects to the system to establish the container context
relative to a specified named container through the use of a
query language command.

6. The system of claim 3 further wherein

0) the system operates in a Specified-CC context with
respect to a specific named container through the speci-
fication of the DV of the CBT that should be associated
with the connection;

p) in a NULL-CC, a Dynamic Query Planner (DQP)
behaves as though CBT’s are distributed according to
their specified DV and all CMT’s that are members of
the named container associated with the CBT are ran-
domly distributed on the same nodegroup associated
with the CBT;

q) in a Global-CC, the DQP behaves as though all rows that
are stored in tables that form part of the same named
container, including all rows in the CBT and the CMT’s
are co-located for the purposes of query planning; and

r) in a Specified-CC, the DQP behaves as though all rows
that are stored in tables that form part of the same named
container, including all rows in the CBT and the CMT’s
are co-located for the purposes of query planning and
operations are restricted to the storage node that holds
the row with the DV associated with the Specified-CC.

7. The system of claim 1 whereby the distribution vector of
arow of data in a table is the distribution vector of a uniquely
determined row in another table related to the subject row
through a defined relationship between the tables.

20

25

30

35

40

45

50

55

60

65

38

8. The system of claim 3 wherein the Container Contexts
further include an Automatic Container Context (Automatic-
CC), whereby when in Automatic-CC, a Dynamic Query
Planner (DQP) handles insertions into a CMT by following
the defined relationship of a candidate row and locating the
storage node where the corresponding row in the target table
of'the defined relationship is stored, and storing the candidate
row on the same storage node.

9. The system of claim 7 whereby the defined relationship
is a foreign key relationship between the two tables.

10. The system of claim 1 that allows for definition of a
polymorphic key where a polymorphic key relationship
establishes a relationship between a row in a first table to
exactly one uniquely determined row in one of many possible
other tables based on the values in columns of a subject row,
and using some specified rules, and expressed in some suit-
able language, or some other mechanism, and whereby the
distribution vector of a row of data in the first table is the
distribution vector of that uniquely determined row in the
other table.

11. The system of claim 1 whereby a row in a CBT may be
relocated from one storage node in the nodegroup associated
with the table to another storage node in the nodegroup asso-
ciated with the table, and where such relocation of arow inthe
CBT causes relocation of all rows in the CMT’s that are
related to the subject CBT.

12. The system of claim 7 that provides for definition of a
polymorphic key wherein a polymorphic key relationship
establishes a foreign key relationship between a row in the
first table and a uniquely determined row in one of many
possible other tables based on the values in columns of the
subject row and using the specified rules.

13. The system of claim 1 whereby a mechanism for defi-
nition of a polymorphic key where a polymorphic key rela-
tionship establishes a relationship between a row in a first
table to a uniquely determined row in one of many possible
other tables based on the values in columns of a subject row,
and using some specified rules;

where the values in columns of one row in one table are
used in evaluation of the specified rules, and to deter-
mine the table to which a polymorphic key relationship
exists for a specified row in the first table; and

where the polymorphic key relationship and the specified
rules are expressed in some suitable language.

14. A method for operating a database management system

comprising:

a) receiving database queries from two or more client
applications via a network interface, the client applica-
tions operating on two or more user client computers, the
network interface providing a least one connection for
each such client application;

b) executing the database queries as database operations on
a group of two or more operational nodes, each opera-
tional node implemented as a logical collection of soft-
ware components that execute on one or more physical
machines;

¢) operating other nodes as storage nodes for storing data;

d) grouping one or more storage nodes into storage node-
groups,

e) interacting with client applications in a query language;

f) storing user data in tables, and grouping the tables into
databases;

g) associating the tables with storage nodegroups, wherein
data for a given table is stored on the storage nodes that
are part of the storage nodegroup associated with the
given table;

US 9,064,031 B2

39

h) distributing data in tables across the various nodes in the
associated storage nodegroups based on various data
distribution methods wherein some data distribution
methods are data dependent where each node contains a
horizontal partition of the data in the table and where the
nodes in the storage nodegroups collectively have all the
data for the table, and wherein other data distribution
methods are data independent distribution methods
where each node contains some or all of the data in the
table;

1) distributing a row of data in a table to the storage nodes
according to a data dependent distribution based on a
value of a distribution vector (DV) which may consist of
columns in the row, or attributes that are not columns of
the row, or determined based on the values of some
columns of the row;

) storing two or more rows in a single table with identical
distribution vectors on the same storage node thereby
achieving co-location of data in the two or more rows;

k) storing two or more rows in two tables associated with
the same storage nodegroup and having identical distri-
bution vectors on the same storage node thereby achiev-
ing co-location of data in the two or more rows in two
tables associated with the same storage nodegroup;

1) defining one or more tables as Container Base Tables
(CBT’s) whereby the values of specified columns in the
CBT defined as the DV of the CBT are used as the DV for
all other tables that are defined to be Container Member
Tables (CMT) controlled by the subject CBT;

m) storing rows in the CMT on the storage node based on
their DV, which is the DV of a uniquely determined row
in the CBT thereby achieving co-location of data in the
CMT with the corresponding row of the CBT; and

n) establishing a named container when a table is defined as
a CBT, and whereby other tables may be defined to be
CMT’s that are part of the same named container.

15. The method of claim 14 further comprising operating

with multiple containers at the same time.

16. The method of claim 15 further operating in different
Container Contexts with respect to each named container,
including a NULL Context (NULL-CC), a Global Context
(Global-CC), and/or a Specified Context (Specified-CC).

17. The method of claim 16 additionally comprising:

associating a persistent state with each connection estab-
lished by a client application, wherein the container
context with respect to each container is associated with
each connection as part of the persistent connection state
associated with the connection.

18. The method of claim 17 further comprising:

establishing the container context relative to a specified
named container through the use of a query language
command.

10

30

40

45

50

40

19. The method of claim 17 further wherein

0) operating in a Specified-CC context with respect to a
specific named container through the specification of the
DV of the CBT that should be associated with the con-
nection;

p) in a NULL-CC, a Dynamic Query Planner (DQP)
behaving as though CBT’s are distributed according to
their specified DV and all CMT’s that are members of
the named container associated with the CBT are ran-
domly distributed on the same nodegroup associated
with the CBT;

q) in a Global-CC, the DQP behaving as though all rows
that are stored in tables that form part of the same named
container, including all rows in the CBT and the CMT’s
are co-located for the purposes of query planning; and

r) in a Specified-CC, the DQP behaving as though all rows
that are stored in tables that form part of the same named
container, including all rows in the CBT and the CMT’s
are co-located for the purposes of query planning and
operations are restricted to the storage node that holds
the row with the DV associated with the Specified-CC.

20. The system of claim 15 whereby the distribution vector
of a row of data in a table is the distribution vector of a
uniquely determined row in another table related to the sub-
ject row through a defined relationship between the tables.

21. The method of claim 17 wherein the Container Con-
texts further include an Automatic Container Context (Auto-
matic-CC), whereby when in Automatic-CC, a Dynamic
Query Planner (DQP) handles insertions into a CMT by fol-
lowing a defined relationship of a candidate row and locating
the storage node where the corresponding row in the target
table of the defined relationship is stored, and storing the
candidate row on the same storage node.

22. The method of claim 21 whereby the defined relation-
ship is a foreign key relationship between the two tables.

23. The method of claim 15 further comprising:

defining a polymorphic key including a polymorphic key
relationship for establishing a relationship between a
row in a first table to exactly one uniquely determined
row in one of many possible other tables based on the
values in columns of a subject row, and using some
specified rules, and expressed in some suitable lan-
guage, or some other mechanism, and whereby the dis-
tribution vector of a row of data in the first table is the
distribution vector of that uniquely determined row in
the other table.

24. The method of claim 15 whereby a row in a CBT may
be relocated from one storage node in the nodegroup associ-
ated with the table to another storage node in the nodegroup
associated with the table, and where such relocation of a row
in the CBT causes relocation of all rows in the CMT’s that are
related to the subject CBT.

#* #* #* #* #*

